Bài 1: Tổng các góc trong một tam giác
Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
Bài 3: Hai tam giác bằng nhau
Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh
Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh
Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc
Bài 7: Tam giác cân
Bài 8: Đường vuông góc và đường xiên
Bài 9: Đường trung trực của một đoạn thẳng
Bài 10: Tính chất ba đường trung tuyến của tam giác
Bài 11: Tính chất ba đường phân giác của tam giác
Bài 12: Tính chất ba đường trung trực của tam giác
Bài 13: Tính chất ba đường cao của tam giác
Bài tập cuối chương 7 Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I cách đều ba đỉnh A, B, C và cũng là trọng tâm của tam giác ABC.
Xem chi tiếtCho tam giác ABC cân tại A có K là trung điểm của đoạn BC. Hai đường phân giác BD và CE cắt nhau tại I. Chứng minh:
Xem chi tiếtChứng minh: Nếu một tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Xem chi tiếtQuan sát Hình 44, biết ∆MAB = ∆NAB. Chứng minh đường thẳng AB là đường trung trực của đoạn thẳng MN.
Xem chi tiếtTừ một điểm A nằm ngoài đường thẳng d, vẽ đường vuông góc AH và các đường xiên AB, AC tùy ý (Hình 40).
Xem chi tiếtCho tam giác ABC cân tại A có \(\widehat {BAC} = 56^\circ \). Trên tia đối của tia CB lấy điểm M sao cho AC = CM. Tính số đo mỗi góc của tam giác ABM.
Xem chi tiếtCho tam giác ABC có AB = AC. Gọi D là trung điểm của BC. Vẽ CM vuông góc với AB tại M, BN vuông góc với AC tại N. Chứng minh AM = AN.
Xem chi tiếtCho tam giác ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB và AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh:
Xem chi tiếtBạn Sơn cho rằng “Nếu độ dài các cạnh của tam giác ABC đều là số tự nhiên và ∆ABC = ∆MNP thì tổng chu vi của tam giác ABC và tam giác MNP là số lẻ”. Bạn Sơn nói như vậy có đúng không? Vì sao?
Xem chi tiết
Danh sách bình luận