Cho hàm số (fleft( x right) = frac{2}{{left( {x - 1} right)left( {x - 2} right)}}) Tìm (mathop {{rm{lim}}}limits_{x to {2^ + }} fleft( x right)) và (mathop {{rm{lim}}}limits_{x to {2^ - }} fleft( x right))
Xem lời giảiTính các giới hạn một bên: a) (mathop {lim }limits_{x to {3^ + }} frac{{{x^2} - 9}}{{left| {x - 3} right|}}); b) (mathop {lim }limits_{x to {1^ - }} frac{x}{{sqrt {1 - x} }})
Xem lời giảiChứng minh rằng giới hạn (mathop {lim }limits_{x to 0} frac{{left| x right|}}{x}) không tồn tại
Xem lời giảiGiải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho a) (fleft( x right) = left{ {begin{array}{*{20}{c}}{frac{1}{x},;x ne 0}\{1;,;x = 0}end{array}} right.;;)gián đoạn tại (x = 0) b) (gleft( x right) = left{ {begin{array}{*{20}{c}}{1 + x;,;x < 1}\{2 - x;,x ge 1}end{array}} right.;;)gián đoạn tại (x = 1)
Xem lời giảiLực hấp dẫn tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm Trái Đất là (Fleft( r right) = left{ {begin{array}{*{20}{c}}{frac{{GMr}}{{{R^3}}};,r < R}\{frac{{GM}}{{{r^2}}};,;r ge R}end{array}} right.) Trong đó M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn. Xét tính liên tục của hàm số F(r).
Xem lời giảiLực hấp dẫn tác dụng lên một đơn vị khối lượng ở khoảng cách r tính từ tâm Trái Đất là (Fleft( r right) = left{ {begin{array}{*{20}{c}}{frac{{GMr}}{{{R^3}}};,r < R}\{frac{{GM}}{{{r^2}}};,;r ge R}end{array}} right.) Trong đó M và R lần lượt là khối lượng và bán kính của Trái Đất, G là hằng số hấp dẫn. Xét tính liên tục của hàm số F(r).
Xem lời giảiTìm các giá trị của a để hàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{x + 1;,x le a}\{{x^2},;a > a}end{array}} right.) liên tục trên (mathbb{R})
Xem lời giải