Câu 6.40 trang 203 SBT Đại số 10 Nâng cao

Giải bài tập Câu 6.40 trang 203 SBT Đại số 10 Nâng cao

Quảng cáo

Đề bài

Chứng minh công thức \(\tan \dfrac{\alpha }{2} = \dfrac{{\sin \alpha }}{{1 + \cos \alpha }}\) (với \(0 < \alpha  < \dfrac{\pi }{2}\)) bằng “phương pháp hình học “ như sau:

Xét tam giác vuông ABC với \(\widehat A = \dfrac{\pi }{2},\widehat B = \alpha \). Bằng cách vẽ đường phân giác BD của góc B (h. 6.5), từ tính chất \(\dfrac{{AD}}{{AB}} = \dfrac{{DC}}{{BC}}\), hãy suy ra rằng:

\(\tan \dfrac{\alpha }{2} = \dfrac{{\sin \alpha }}{{1 + \cos \alpha }}.\) Hãy tính \(\tan \dfrac{\pi }{{12}}\).

 

Lời giải chi tiết

Ta có

 \(\begin{array}{l}\dfrac{{AD}}{{AB}} = \dfrac{{DC}}{{BC}} = \dfrac{{AC - AD}}{{BC}}\\ = \dfrac{{AC}}{{BC}} - \dfrac{{AD}}{{AB}}.\dfrac{{AB}}{{BC}}\end{array}\)

Từ đó \(\dfrac{{AD}}{{AB}}\left( {1 + \dfrac{{AB}}{{BC}}} \right) = \dfrac{{AC}}{{BC}},\) tức là \(\tan \dfrac{\alpha }{2}\left( {1 + \cos \alpha } \right) = \sin \alpha \), suy ra \(\tan \dfrac{\alpha }{2} = \dfrac{{\sin \alpha }}{{1 + \cos \alpha }}\).

Với \(\alpha  = \dfrac{\pi }{6}\) ta được \(\tan \dfrac{\pi }{{12}} = \dfrac{1}{{2\left( {1 + \dfrac{{\sqrt 3 }}{2}} \right)}} = \dfrac{1}{{2 + \sqrt 3 }} = 2 - \sqrt 3 .\)

Loigiaihay.com

Quảng cáo

2k8 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập miễn phí

close