Câu 6.40 trang 203 SBT Đại số 10 Nâng caoGiải bài tập Câu 6.40 trang 203 SBT Đại số 10 Nâng cao Quảng cáo
Đề bài Chứng minh công thức \(\tan \dfrac{\alpha }{2} = \dfrac{{\sin \alpha }}{{1 + \cos \alpha }}\) (với \(0 < \alpha < \dfrac{\pi }{2}\)) bằng “phương pháp hình học “ như sau: Xét tam giác vuông ABC với \(\widehat A = \dfrac{\pi }{2},\widehat B = \alpha \). Bằng cách vẽ đường phân giác BD của góc B (h. 6.5), từ tính chất \(\dfrac{{AD}}{{AB}} = \dfrac{{DC}}{{BC}}\), hãy suy ra rằng: \(\tan \dfrac{\alpha }{2} = \dfrac{{\sin \alpha }}{{1 + \cos \alpha }}.\) Hãy tính \(\tan \dfrac{\pi }{{12}}\).
Lời giải chi tiết Ta có \(\begin{array}{l}\dfrac{{AD}}{{AB}} = \dfrac{{DC}}{{BC}} = \dfrac{{AC - AD}}{{BC}}\\ = \dfrac{{AC}}{{BC}} - \dfrac{{AD}}{{AB}}.\dfrac{{AB}}{{BC}}\end{array}\) Từ đó \(\dfrac{{AD}}{{AB}}\left( {1 + \dfrac{{AB}}{{BC}}} \right) = \dfrac{{AC}}{{BC}},\) tức là \(\tan \dfrac{\alpha }{2}\left( {1 + \cos \alpha } \right) = \sin \alpha \), suy ra \(\tan \dfrac{\alpha }{2} = \dfrac{{\sin \alpha }}{{1 + \cos \alpha }}\). Với \(\alpha = \dfrac{\pi }{6}\) ta được \(\tan \dfrac{\pi }{{12}} = \dfrac{1}{{2\left( {1 + \dfrac{{\sqrt 3 }}{2}} \right)}} = \dfrac{1}{{2 + \sqrt 3 }} = 2 - \sqrt 3 .\) Loigiaihay.com
Quảng cáo
|