Câu 6.38 trang 202 SBT Đại số 10 Nâng caoGiải bài tập Câu 6.38 trang 202 SBT Đại số 10 Nâng cao Quảng cáo
Đề bài Chứng minh rằng, với mọi \(\alpha \), với mọi số nguyên k, ta có: \(\sin \left( {\alpha + k\dfrac{\pi }{2}} \right) = \left\{ \begin{array}{l}{\left( { - 1} \right)^l}\sin \alpha \,\,\,\,\,nếu\,\,k - 2l\\{\left( { - 1} \right)^l}\cos \alpha \,\,\,\,nếu\,\,k = 2l + 1;\end{array} \right.\) \(\cos \left( {\alpha + k\dfrac{\pi }{2}} \right) = \left\{ \begin{array}{l}{\left( { - 1} \right)^l}\cos \alpha \,\,\,\,\,nếu\,\,k = 2l\\{\left( { - 1} \right)^{l + 1}}\sin \alpha \,\,\,\,nếu\,\,k = 2l + 1;\end{array} \right.\) \(\tan \left( {\alpha + k\dfrac{\pi }{2}} \right) = \left\{ \begin{array}{l}\tan \alpha \,\,\,\,\,\,\,\,nếu\,\,k = 2l + 1\\ - \cot \alpha \,\,\,\,nếu\,\,k = 2l + 1\,\end{array} \right.\) (khi các biểu thức này có nghĩa) Lời giải chi tiết • \(\sin \left( {\alpha + 2l\dfrac{\pi }{2}} \right) = \sin \left( {\alpha + l\pi } \right) = {\left( { - 1} \right)^l}\sin \alpha \); \(\begin{array}{l}\sin \left[ {\alpha + \left( {2l + 1} \right)\dfrac{\pi }{2}} \right] = \sin \left( {\alpha + \dfrac{\pi }{2} + l\pi } \right)\\ = {\left( { - 1} \right)^l}\sin \left( {\alpha + \dfrac{\pi }{2}} \right) = {\left( { - 1} \right)^l}\cos \alpha .\end{array}\) • \(\begin{array}{l}\cos \left( {\alpha + 2l\dfrac{\pi }{2}} \right) = \cos \left( {\alpha + l\pi } \right) = {\left( { - 1} \right)^l}\cos \alpha \\\cos \left[ {\alpha + \left( {2l + 1} \right)\dfrac{\pi }{2}} \right] = \cos \left( {\alpha + \dfrac{\pi }{2} + l\pi } \right)\\ = {\left( { - 1} \right)^l}\cos \left( {\alpha + \dfrac{\pi }{2}} \right) = {\left( { - 1} \right)^l}\left( { - \sin \alpha } \right)\\ = {\left( { - 1} \right)^{l + 1}}\sin \alpha \end{array}\) • Từ đó \(\begin{array}{l}\tan \left( {\alpha + 2l\dfrac{\pi }{2}} \right) = \tan \alpha ;\\\tan \left[ {\alpha + \left( {2l + 1} \right)\dfrac{\pi }{2}} \right] = - \cot \alpha .\end{array}\) Loigiaihay.com
Quảng cáo
|