Câu 6.35 trang 201 SBT Đại số 10 Nâng caoGiải bài tập Câu 6.35 trang 201 SBT Đại số 10 Nâng cao Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tính LG a \(\cos \dfrac{\pi }{9} + \cos \dfrac{{2\pi }}{9} + \ldots + \cos \dfrac{{8\pi }}{9};\) Lời giải chi tiết: \(\cos \dfrac{\pi }{9} + \cos \dfrac{{2\pi }}{9} + \ldots + \cos \dfrac{{8\pi }}{9} = 0\), do \(\cos \left( {\pi - \alpha } \right) = - \cos \alpha .\) LG b \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} + {\sin ^2}\dfrac{\pi }{9} + {\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} + {\sin ^2}\dfrac{{7\pi }}{{18}}\); Lời giải chi tiết: Do \(\sin \dfrac{\pi }{3} = \sin \left( {\dfrac{\pi }{2} - \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{6}\) nên \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} = 1.\) Do \(\sin \dfrac{{7\pi }}{{18}} = \sin \left( {\dfrac{\pi }{2} - \dfrac{\pi }{9}} \right) = \cos \dfrac{\pi }{9}\) nên \({\sin ^2}\dfrac{{7\pi }}{{18}} + {\sin ^2}\dfrac{\pi }{9} = 1\). Do \(\sin \dfrac{{5\pi }}{{18}} = \sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) = \cos \dfrac{{2\pi }}{9}\) nên \({\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} = 1\). Vậy \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} + {\sin ^2}\dfrac{\pi }{9} + {\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} + {\sin ^2}\dfrac{{7\pi }}{{18}} = 3\) LG c \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} + {\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} + {\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9}\); Lời giải chi tiết: Do \(\cos \left( {\dfrac{{5\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) = - \sin \dfrac{\pi }{3}\), nên \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} = 1\). Do \(\cos \dfrac{{11\pi }}{{18}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{9}} \right) = - \sin \dfrac{\pi }{9}\), nên \({\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} = 1\) Do \(\cos \dfrac{{13\pi }}{{18}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{{2\pi }}{9}} \right) = - \sin \dfrac{{2\pi }}{9}\), nên \({\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9} = 1\) Vậy \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} + {\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} + {\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9} = 3\) LG d \(\cos \dfrac{\pi }{5} + \cos \dfrac{{2\pi }}{5} + \ldots + \cos \dfrac{{9\pi }}{5};\) Lời giải chi tiết: Do \(\cos \dfrac{{6\pi }}{5} = \cos \left( {\pi + \dfrac{\pi }{5}} \right) = - \cos \dfrac{\pi }{5};\) \(\cos \dfrac{{7\pi }}{5} = - \cos \dfrac{{2\pi }}{5};\cos \dfrac{{8\pi }}{5} = - \cos \dfrac{{3\pi }}{5};\) \(\cos \dfrac{{9\pi }}{5} = - \cos \dfrac{{4\pi }}{5};\cos \pi = - 1\) nên \(\cos \dfrac{\pi }{5} + \cos \dfrac{{2\pi }}{5} + \ldots + \cos \dfrac{{9\pi }}{5} = - 1\) LG e \(\sin \dfrac{\pi }{5} + \sin \dfrac{{2\pi }}{5} + \ldots + \sin \dfrac{{9\pi }}{5}\) Lời giải chi tiết: Tương tự đối với sin, nhưng ở đây \(\sin \pi = 0\), ta có : \(\sin \dfrac{\pi }{5} + \sin \dfrac{{2\pi }}{5} + \ldots + \sin \dfrac{{9\pi }}{5} = 0.\) (Chú ý: Ta cũng có thể xét thập giác đều có các đỉnh là \({A_k}\) là các điểm trên đường tròn lượng giác, xác định bởi các số \(\dfrac{{k\pi }}{5}\) (k = 1; 2; 3; 4; ....; 9; 10) và nhận xét rằng \(\overrightarrow {O{A_1}} + \overrightarrow {O{A_2}} + \ldots \overrightarrow {O{A_{10}}} = \overrightarrow 0 \)) Loigiaihay.com
Quảng cáo
|