Bài 6 trang 126 SGK Hình học 11

a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau BD' và B'C.

Quảng cáo

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\).

a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau \(BD'\) và \(B'C\).

b)Tính khoảng cách của hai đường thẳng \(BD'\) và \(B'C\)

Video hướng dẫn giải

Quảng cáo
decumar

Lời giải chi tiết

a) \(AB ⊥ (BCC’B’) ⇒ AB ⊥ B’C\)

\(BCC’B’\) là hình vuông có \(BC’ ⊥ B’C\)

\(⇒ B’C ⊥ (ABC’D’)\)

Trong mặt phẳng \((ABC’D’)\), kẻ \(IK ⊥ BD’\).

Vì \(B’C ⊥ (ABC’D’) ⇒ B’C ⊥ IK\)

Kết hợp với \(IK ⊥ BD’ \) \( ⇒ IK\) là đường vuông góc chung của \(B’C\) và \(BD’\)

b) Ta có: \(d\left( {B'C,BD'} \right) = IK\)

\(C'B = \sqrt {C{B^2} + B'{B^2}}  \) \(= \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

\(D'B = \sqrt {C'{B^2} + C'D{'^2}} \) \( = \sqrt {2{a^2} + {a^2}}  = a\sqrt 3 \)

Xét \(∆BIK\) và \(∆BD’C’\) có:

B chung

\(\widehat {BC'D'} = \widehat {BKI} = {90^0}\)

Suy ra \(∆BIK \backsim ∆BD’C’\) (g-g)

\(\eqalign{
& \Rightarrow {{IK} \over {D'C'}} = {{BI} \over {B{\rm{D}}'}} \cr
& \Rightarrow IK = {{BI.D'C'} \over {B{\rm{D}}'}} \cr} \).

Mà \(BI = \dfrac{1}{2}BC' = \dfrac{{a\sqrt 2 }}{2}\) nên:

\(IK = \dfrac{{\frac{{a\sqrt 2 }}{2}.a}}{{a\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{6}\)

Vậy \(d\left( {B'C,BD'} \right) = \dfrac{{a\sqrt 6 }}{6} \)

loigiaihay.com

Quảng cáo

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close