Câu 4.98 trang 118 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.98 trang 118 SBT Đại số 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Xét dấu các biểu thức sau :

 

LG a

 \(\dfrac{{7x - 4}}{{8x + 5}} - 2\)

 

Lời giải chi tiết:

Nếu đặt \(f\left( x \right) = \dfrac{{7x - 4}}{{8x + 5}} - 2\) thì

\(\begin{array}{l}f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \dfrac{{14}}{9}; - \dfrac{5}{8}} \right)\\f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ; - \dfrac{{14}}{9}} \right) \cup \left( { - \dfrac{5}{8}; + \infty } \right).\end{array}\)

 

LG b

 \(\dfrac{{{x^2} - 5x + 4}}{{{x^2} + 5x + 4}}\)

 

Lời giải chi tiết:

Nếu đặt \(g\left( x \right) = \dfrac{{{x^2} - 5x + 4}}{{{x^2} + 5x + 4}}\) thì

\(\begin{array}{l}g\left( x \right) < 0 \Leftrightarrow x \in \left( { - 4; - 1} \right) \cup \left( {1;4} \right)\\g\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - 4} \right) \cup \left( { - 1;1} \right) \cup \left( {4; + \infty } \right).\end{array}\)

 

LG c

 \(\dfrac{{15{x^2} - 7x - 2}}{{6{x^2} - x + 5}}\)

 

Lời giải chi tiết:

Nếu đặt \(h\left( x \right) = \dfrac{{15{x^2} - 7x - 2}}{{6{x^2} - x + 5}}\) thì

\(\begin{array}{l}h\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - \dfrac{1}{5}} \right) \cup \left( {\dfrac{2}{3}; + \infty } \right)\\h\left( x \right) < 0 \Leftrightarrow x \in \left( { - \dfrac{1}{5};\dfrac{2}{3}} \right).\end{array}\)

 

LG d

\(\dfrac{{{x^4} - 17{x^2} + 60}}{{x\left( {{x^2} - 8x + 5} \right)}}\)

 

Lời giải chi tiết:

Nếu đặt \(p\left( x \right) = \dfrac{{{x^4} - 17{x^2} + 60}}{{x\left( {{x^2} - 8x + 5} \right)}}\) thì \(p(x) > 0\) khi và chỉ khi

\(x \in \left( { - \sqrt {12} , - \sqrt 5 } \right) \cup \left( {0;4 - \sqrt {11} } \right)\)\( \cup \left( {\sqrt 5 ;\sqrt {12} } \right)\)\( \cup \left( {4 + \sqrt {11} ; + \infty } \right).\)

\(p(x) < 0\) khi và chỉ khi

\(x \in \left( { - \infty ; - \sqrt {12} } \right) \cup \left( { - \sqrt 5 ;0} \right)\)\( \cup \left( {4 - \sqrt {11} ;\sqrt 5 } \right) \cup \left( {\sqrt {12} ;4 + \sqrt {11} } \right).\) 

Loigiaihay.com

 

Quảng cáo
list
close
Gửi bài