Câu 4.6 trang 103 SBT Đại số 10 Nâng caoGiải bài tập Câu 4.6 trang 103 SBT Đại số 10 Nâng cao. Quảng cáo
Đề bài Cho a, b, c, d là bốn số dương. Chứng minh rằng \(1 < \dfrac{a}{{a + b + c}} + \dfrac{b}{{b + c + {\rm{d}}}} + \dfrac{c}{{c + {\rm{d}} + a}} + \dfrac{{\rm{d}}}{{d + a + b}} < 2.\) Lời giải chi tiết Do a, b, c, d là các số dương nên \(\begin{array}{l}\dfrac{a}{{a + b + c}} > \dfrac{a}{{a + b + c + {\rm{d}}}}\\\dfrac{b}{{b + c + {\rm{d}}}} > \dfrac{b}{{a + b + c + {\rm{d}}}}\\\dfrac{c}{{c + {\rm{d}} + a}} > \dfrac{c}{{a + b + c + {\rm{d}}}}\\\dfrac{{\rm{d}}}{{d + a + b}} > \dfrac{{\rm{d}}}{{a + b + c + {\rm{d}}}}\end{array}\) Cộng vế với cế của các bất đẳng thức trên, ta suy ra \(\dfrac{a}{{a + b + c}} + \dfrac{b}{{b + c + {\rm{d}}}} + \dfrac{c}{{c + {\rm{d}} + a}} + \dfrac{{\rm{d}}}{{d + a + b}} > 1\) Lại có \(\dfrac{a}{{a + b + c}} < \dfrac{a}{{a + c}};\dfrac{c}{{c + {\rm{d}} + a}} < \dfrac{c}{{a + c}}\) Nên \(\dfrac{a}{{a + b + c}} + \dfrac{c}{{c + {\rm{d}} + a}} < 1.\) Tương tự \(\dfrac{b}{{b + c + {\rm{d}}}} + \dfrac{{\rm{d}}}{{d + a + b}} < 1.\) Từ đó suy ra \(\dfrac{a}{{a + b + c}} + \dfrac{b}{{b + c + {\rm{d}}}} + \dfrac{c}{{c + {\rm{d}} + a}} + \dfrac{{\rm{d}}}{{d + a + b}} < 2\) Loigiaihay.com
Quảng cáo
|