Câu 4.55 trang 184 sách bài tập Giải tích 12 Nâng cao

Trong mặt phằng phức xét ngũ giác đều ABCDE nội tiếp đường tròn đơn vị. A là điểm biểu diễn số 1

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Trong mặt phẳng phức xét ngũ giác đều ABCDE nội tiếp đường tròn đơn vị. A là điểm biểu diễn số 1 (giả sử đi dọc chu vi đa giác theo ngược chiều kim đồng hồ gặp các đỉnh kế tiếp B, C, D, E). Kí hiệu \({z_1},{z_2},{z_3},{z_4}\) là các số phức theo thứ tự biểu diễn bởi các điểm B, C, D, E.

LG a

Chứng minh rằng \(1,{z_1},{z_2},{z_3},{z_4}\) là các nghiệm của phương trình \({z^5} - 1 = 0\) và \({z_1} + {1 \over {{z_1}}} = 2\cos {{2\pi } \over 5}\)

Giải chi tiết:

\({z_1} = \cos {{2\pi } \over 5} + i\sin {{2\pi } \over 5},{z_2} = \cos {{4\pi } \over 5} + i\sin {{4\pi } \over 5}\)

   \({z_3} = \cos {{6\pi } \over 5} + i\sin {{6\pi } \over 5},{z_4} = \cos {{8\pi } \over 5} + i\sin {{8\pi } \over 5}\)

Từ đó theo công thức Moa-vrơ, \(1,{z_1},{z_2},{z_3},{z_4}\) là nghiệm các phương trình \({z^5} - 1 = 0\) (đó là tất cả các nghiệm vì phương trình có bậc 5).

\({z_1} + {1 \over {{z_1}}} = {z_1} + {\bar z_1} = 2\cos {{2\pi } \over 5}\)

LG b

Viết \({z^5} - 1 = \left( {z - 1} \right)\left( {{z^4} + {z^3} + {z^2} + z + 1} \right)\) rồi đưa phương trình \({z^4} + {z^3} + {z^2} + z + 1 = 0\) về phương trình bậc hai đối với ẩn phụ \({\rm{w}} = z + {1 \over z}\). Từ đó suy ra \(\cos {{2\pi } \over 5} = {{ - 1 + \sqrt 5 } \over 4}\)

Giải chi tiết:

Với \(z \ne 0,\)

\({z^4} + {z^3} + {z^2} + z + 1 = {z^2}\left( {{z^2} + {1 \over {{z^2}}} + z + {1 \over z} + 1} \right)\)

\( = {z^2}\left( {{{\left( {z + {1 \over z}} \right)}^2} + \left( {z + {1 \over z}} \right) - 1} \right) \)

\(= {z^2}\left( {{{\rm{w}}^2} + {\rm{w}} - 1} \right)\), trong đó \({\rm{w}} = z + {1 \over z}\)

Phương trình \({{\rm{w}}^2} + {\rm{w}} - 1 = 0\) có hai nghiệm là \({{ - 1 \pm \sqrt 5 } \over 2}\)

Vì \({z_1},{z_2},{z_3},{z_4}\) là bốn nghiệm của phương trình \({z^4} + {z^3} + {z^2} + z + 1 = 0\) tức là nghiệm của phương trình:

\({\left( {z + {1 \over z}} \right)^2} + \left( {z + {1 \over z}} \right) - 1 = 0\) và \({z_4} = {\bar z_1} = {1 \over {{z_1}}},{z_3} = {\bar z_2} = {1 \over {{z_2}}}\)  nên \({z_1} + {1 \over {{z_1}}},{z_2} + {1 \over {{z_2}}}\) là hai nghiệm phân biệt của phương trình \({{\rm{w}}^2} + {\rm{w}} - 1 = 0\)

Từ đó suy ra \(2\cos {{2\pi } \over 5} = {{ - 1 + \sqrt 5 } \over 2}\) (còn \(2\cos {{4\pi } \over 5} = {{ - 1 - \sqrt 5 } \over 2}\)) để ý rằng \(\cos {{2\pi } \over 5} > 0,\cos {{4\pi } \over 5} < 0\) (h.4.14)

             

                               

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close