Câu 4.20 trang 136 sách bài tập Đại số và Giải tích 11 Nâng cao

Chứng minh rằng

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh rằng nếu dãy số \(\left( {{u_n}} \right)\) không có giới hạn hữu hạn với mọi số \(c \ne 0,\) dãy \(\left( {c{u_n}} \right)\) cũng không có giới hạn hữu hạn

 

Lời giải chi tiết:

 Chứng minh bằng phương pháp phản chứng.

 

LG b

Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) không có giới hạn hữu hạn. Có thể kết luận rằng dãy số \(\left( {{u_n} + {v_n}} \right)\) có giới hạn hữu hạn không ?

 

Lời giải chi tiết:

Dãy \(\left( {{u_n} + {v_n}} \right)\) có thể có giới hạn hoặc không có giới hạn hữu hạn. Chẳng hạn hai dãy  số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) với \({u_n} = {\left( { - 1} \right)^n}\) và \({v_n} = {\left( { - 1} \right)^{n + 1}}\) đều không có giới hạn hữu hạn, nhưng dãy số \(\left( {{u_n} + {v_n}} \right)\) là dãy số có giới hạn hữu hạn (\({u_n} + {v_n} = 0\) với mọi n)

Nếu \(\left( {{u_n}} \right)\) là một dãy số không có giới hạn hữu hạn thì dãy số \(\left( {{u_n} + {v_n}} \right) = \left( {2{u_n}} \right)\) không có giới hạn hữu hạn.

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close