tuyensinh247

Câu 4.19 trang 136 sách bài tập Đại số và Giải tích 11 Nâng cao

Chứng minh rằng

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh rằng nếu dãy số \(\left( {{u_n}} \right)\) có giới hạn hữu hạn và dãy \(\left( {{v_n}} \right)\) không có giới hạn hữu hạn thì dãy số \(\left( {{u_n} + {v_n}} \right)\) không có giới hạn hữu hạn.

 

Lời giải chi tiết:

Đặt \({{\rm{w}}_n} = {u_n} + {v_n}.\) Ta chứng minh dãy số \(\left( {{\rm{w}_n}} \right)\) không có giới hạn hữu hạn, bằng phản chứng. Giả sử \(\lim {{\rm{w}}_n} = M \in R.\) Khi đó \(\lim {v_n} = \lim \left( {{{\rm{w}}_n} - {u_n}} \right) = M - L.\) Ta đi đến mâu thuẫn

 

LG b

Dãy số \(\left( {{{\left( { - 1} \right)}^n} + {1 \over n}} \right)\) có giới hạn hữu hạn hay không ?

 

Lời giải chi tiết:

Chứng minh tương tự câu a): Dãy số \({\left( { - 1} \right)^n}\) không có giới hạn hữu hạn và dãy số \(\left( {{1 \over n}} \right)\) có giới hạn hữu hạn \(\left( {\lim {1 \over n} = 0} \right).\) Do đó dãy số \(\left( {{{\left( { - 1} \right)}^n} + {1 \over n}} \right)\) không có giới hạn hữu hạn.

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close