Câu 4.18 trang 105 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.18 trang 105 SBT Đại số 10 Nâng cao.

Quảng cáo

Đề bài

Cho ba số dương a, b, c, chứng minh rằng :

\(\left( {1 + \dfrac{a}{b}} \right)\left( {{\rm{a}} + \dfrac{b}{c}} \right)\left( {1 + \dfrac{c}{a}} \right) \ge 8\)

 

Lời giải chi tiết

Với \(a > 0, b > 0, c > 0\) thì

\(1 + \dfrac{a}{b} \ge 2\sqrt {\dfrac{a}{b}}  \ge 0;\)

\(\,1 + \dfrac{b}{c} \ge 2\sqrt {\dfrac{b}{c}} ;\)

\(\,1 + \dfrac{c}{a} \ge 2\sqrt {\dfrac{c}{a}}  \ge 0\)

Từ đó suy ra \(\left( {1 + \dfrac{a}{b}} \right) \left( {1 + \dfrac{b}{c}} \right)\left( {1 + \dfrac{c}{a}} \right) \ge {2^3}\sqrt {\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}\)

\(  = 8\)

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close