Câu 4.18 trang 105 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.18 trang 105 SBT Đại số 10 Nâng cao.

Quảng cáo

Đề bài

Cho ba số dương a, b, c, chứng minh rằng :

\(\left( {1 + \dfrac{a}{b}} \right)\left( {{\rm{a}} + \dfrac{b}{c}} \right)\left( {1 + \dfrac{c}{a}} \right) \ge 8\)

 

Lời giải chi tiết

Với \(a > 0, b > 0, c > 0\) thì

\(1 + \dfrac{a}{b} \ge 2\sqrt {\dfrac{a}{b}}  \ge 0;\)

\(\,1 + \dfrac{b}{c} \ge 2\sqrt {\dfrac{b}{c}} ;\)

\(\,1 + \dfrac{c}{a} \ge 2\sqrt {\dfrac{c}{a}}  \ge 0\)

Từ đó suy ra \(\left( {1 + \dfrac{a}{b}} \right) \left( {1 + \dfrac{b}{c}} \right)\left( {1 + \dfrac{c}{a}} \right) \ge {2^3}\sqrt {\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}\)

\(  = 8\)

Loigiaihay.com

 

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close