Câu 4.20 trang 105 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.20 trang 105 SBT Đại số 10 Nâng cao.

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị nhỏ nhất của các hàm số sau

 

LG a

 \(f\left( {\rm{x}} \right) = {x^2} + \dfrac{{16}}{{{x^2}}}\)

 

Lời giải chi tiết:

\({x^2} + \dfrac{{16}}{{{x^2}}} \ge 2\sqrt {{{x}^2}.\dfrac{{16}}{{{x^2}}}}  = 8.\) Đẳng thức xảy ra khi \(x = ±2.\)-

Vậy giá trị nhỏ nhất của \(f(x)\) là 8 khi \(x = ±2.\)

 

LG b

\(g\left( {\rm{x}} \right) = \dfrac{1}{x} + \dfrac{2}{{1 - x}}\)  với \(0 < x < 1.\)

 

Lời giải chi tiết:

Do \(0 < x < 1\) nên \(1 – x > 0.\)

Ta có

\(\eqalign{& {1 \over x} = {{1 - x} \over x} + 1; \cr& {2 \over {1 - x}} = {{2x} \over {1 - x}} + 2; \cr & {1 \over x} + {2 \over {1 - x}} \cr & = {{1 - x} \over x} + {{2x} \over {1 - x}} + 3 \ge 2\sqrt {{{1 - x} \over x}.{{2x} \over {1 - x}}} + 3 \cr & = 2\sqrt 2 + 3 \cr} \)

Đẳng thức xảy ra khi \(\dfrac{{1 - x}}{x} = \dfrac{{2x}}{{1 - x}}\)  và \(0 < x < 1\) tức là \(x =  - 1 + \sqrt 2 .\)

Vậy giá trị nhỏ nhất của \(g(x)\) là \(2\sqrt 2  + 3\) khi \(x =  - 1 + \sqrt 2 \)

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close