Câu 4.25 trang 105 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.25 trang 105 SBT Đại số 10 Nâng cao.

Quảng cáo

Đề bài

Trên mặt phẳng tọa độ Oxy, vẽ đường tròn tâm O có bán kính R (R > 0). Trên các tia Ox và Oy lần lượt lấy hai điểm A và B sao cho đường thẳng AB luôn tiếp xúc với đường tròn đó.

Hãy xác định tọa độ của A và B để tam giác OAB có diện tích nhỏ nhất.

 

Lời giải chi tiết

Ta có

\(\begin{array}{l}{S_{OAB}} = \dfrac{1}{2}OI.AB = \dfrac{{\rm{R}}}{2}.AB;\\AB = IA + IB \ge 2\sqrt {IA.IB}  = 2\sqrt {{\rm{O}}{I^2}}  = 2{\rm{R}};\\AB = 2{\rm{R}} \Leftrightarrow IA = IB = R.\end{array}\)

Lúc đó tam giác OAB vuông cân tại O,

Cạnh huyền \(AB = 2R.\)

\(OA = OB = R\sqrt 2 \)

Suy ra \({S_{OAB}} \ge \dfrac{{\rm{R}}}{2}.2{\rm{R}} = {R^2}.\)

Vậy \({S_{OAB}}\) nhỏ nhất bằng \({R^2}\) khi \(OA = OB = R\sqrt 2 .\) Khi đó tọa độ \(A\left( {{\rm{R}}\sqrt 2 ;0} \right)\) và \(B\left( {0;R\sqrt 2 } \right).\)

Loigiaihay.com

 

Quảng cáo

2k8 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập miễn phí

close