Câu 39 trang 243 SBT Đại số 10 Nâng cao

Giải bài tập Câu 39 trang 243 SBT Đại số 10 Nâng cao

Quảng cáo

Đề bài

Chứng minh rằng, nếu \(\alpha  + \beta  + \gamma  = \pi \) thì

\({\cos ^2}\alpha  + {\cos ^2}\beta  + {\cos ^2}\gamma  + 2\cos \alpha \cos \beta \cos \gamma  = 1\).

 

Lời giải chi tiết

Ta có:

\(\begin{array}{l}{\cos ^2}\gamma  + 2\cos \alpha \cos \beta \cos \gamma \\ = \cos \gamma \left[ {\cos \left( {\pi  - \left( {\alpha  + \beta } \right)} \right) + 2\cos \alpha \cos \beta } \right]\\ = \cos \gamma \left[ { - \cos \alpha \cos \beta  + \sin \alpha \sin \beta  + 2\cos \alpha \cos \beta } \right]\\ = \cos \gamma \cos \left( {\alpha  - \beta } \right)\\ =  - \cos \left( {\alpha  + \beta } \right)\cos \left( {\alpha  - \beta } \right)\\ = {\sin ^2}\alpha {\sin ^2}\beta  - {\cos ^2}\alpha {\cos ^2}\beta \\ = {\sin ^2}\alpha {\sin ^2}\beta  - \left( {1 - {{\sin }^2}\alpha } \right)\left( {1 - {{\sin }^2}\beta } \right)\\ =  - 1 + {\sin ^2}\alpha  + {\sin ^2}\beta \\ = 1 - {\cos ^2}\alpha  - {\cos ^2}\beta .\end{array}\)

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close