Câu 3.41 trang 147 sách bài tập Giải tích 12 Nâng cao

Đặt

Quảng cáo

Đề bài

Đặt \({I_n} = \int\limits_0^{{\pi  \over 2}} {{{\sin }^n}xdx} \). Chứng minh rằng \({I_n} = {{n - 1} \over n}{I_{n - 2}}\). Từ đó hãy tính \({I_6}\) và \({I_7}\) 

Lời giải chi tiết

\({I_6} = {{5\pi } \over {32}},{I_7} = {{16} \over {35}}\)

Hướng dẫn: Vận dụng công thức tính tích phân từng phần tương tự như bài 3.40.

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close