tuyensinh247

Câu 16 trang 240 SBT Đại số 10 Nâng cao

Giải bài tập Câu 16 trang 240 SBT Đại số 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh bất đẳng thức sau:

 

LG a

\(\dfrac{{{a^2} + 3}}{{\sqrt {{a^2} + 2} }} > 2;\)

 

Lời giải chi tiết:

\(\begin{array}{l}\dfrac{{{a^2} + 3}}{{\sqrt {{a^2} + 2} }} > 2\\ \Leftrightarrow {a^2} + 2 + 1 > 2\sqrt {{a^2} + 2} \\ \Leftrightarrow {\left( {\sqrt {{a^2} + 2}  - 1} \right)^2} > 0\end{array}\)

Do \({a^2} + 2 \ge 2\) với mọi a nên \(\sqrt {{a^2} + 2}  - 1 > 0\). Vì vậy bất đẳng thức cuối cùng đúng. Suy ra điều phải chứng minh.

 

LG b

\(\dfrac{{{a^3}}}{{{a^6} + 1}} \le \dfrac{1}{2}.\)

 

Lời giải chi tiết:

\(\begin{array}{l}\dfrac{{{a^3}}}{{{a^6} + 1}} \le \dfrac{1}{2}\\ \Leftrightarrow 2{a^3} \le {a^6} + 1\\ \Leftrightarrow {\left( {{a^3} - 1} \right)^2} \ge 0\end{array}\)

Dấu đẳng thức xảy ra khi \(a = 1\).

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close