-
Bài 11 trang 100 sách bài tập toán 9 - Chân trời sáng tạo
Cho bốn điểm A, B, C, D trên đường tròn (O) như Hình 7. a) (widehat {BOC}) là góc nội tiếp chắn cung (oversetfrown{BC}) của đường tròn (O). b) (widehat {OBC} = {40^o}) c) (widehat {BAC} = widehat {BDC}) d) (widehat {BAC} = 70{}^o)
Xem chi tiết -
Bài 12 trang 100 sách bài tập toán 9 - Chân trời sáng tạo
Cho AB và AC là hai tiếp tuyến tiếp xúc với đường tròn (O; R) lần lượt tại hai tiếp điểm B và C (Hình 8). a) AB = AO. b) Tia AO là tia phân giác của (widehat {BAC}). c) Tia OA là tai phân giác của (widehat {BOC}) d) OA = OB = R.
Xem chi tiết -
Bài 13 trang 100 sách bài tập toán 9 - Chân trời sáng tạo
Cho tam giác ABC nhọn với các đường cao AA’, BB’, CC’. Chứng minh rằng A’A là tia phân giác của góc (widehat {B'A'C'}).
Xem chi tiết -
Bài 14 trang 100 sách bài tập toán 9 - Chân trời sáng tạo
Cho đường tròn (O; R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (D thuộc cung nhỏ AB). Vẽ đường kính DE. Chứng minh: a) MA.MB = MC.MD. b) Tứ giác ABEC là hình thang cân. c) Tổng MA2 + MB2 + MC2 + MD2 có giá trị không đổi khi M thay đổi vị trí trong đường tròn (O).
Xem chi tiết -
Bài 15 trang 100 sách bài tập toán 9 - Chân trời sáng tạo
Cho tam giác ABC cân tại A, (widehat A < {90^o}). Vẽ đường tròn đường kính AB cắt BC và AC lần lượt tại D và E. Chứng minh rằng: a) (Delta DBE) là tam giác cân. b) (widehat {CBE} = frac{1}{2}widehat {BAC})
Xem chi tiết -
Bài 16 trang 101 sách bài tập toán 9 - Chân trời sáng tạo
Trong Hình 9, cho biết AB = 12, AC = 16; đường tròn (I) tiếp xúc với AH, BC và đường tròn (O); đường tròn (J) tiếp xúc với AH, BC và đường tròn (O). Tính: a) BC, BH. b) Bán kính R, R’ của đường tròn (I) và (J). c) Khoảng cách PQ.
Xem chi tiết -
Bài 17 trang 101 sách bài tập toán 9 - Chân trời sáng tạo
Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại hai điểm A và B phân biệt. Vẽ đường thẳng vuông góc với AB tại A và cắt (O), (O’) lần lượt tại C, D. Tia CB cắt (O’) tại E, tia DB cắt (O) tại F. Chứng minh rằng: a) CD.CA = CB.CE. b) DC.DA = DB.DF. c) CD2 = CB.CE + DB.DF.
Xem chi tiết -
Bài 18 trang 101 sách bài tập toán 9 - Chân trời sáng tạo
Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc trong tại A. Một tiếp tuyến của đường tròn (O’) tại M cắt đường tròn (O) tại hai điểm B, C. Đường thẳng BO’ cắt đường tròn (O) tại điểm thứ hai D và cắt đường thẳng AM tại E. Gọi F là giao điểm thứ hai của đường tròn ngoại tiếp tam giác ADE với AC và N là giao điểm thứ hai của AN với (O). Chứng minh rằng: a) O’M // ON. b) Ba điểm D, N, F thẳng hàng. c) DF là tia phân giác của góc (widehat {BDC}).
Xem chi tiết