Họ tất cả các nguyên hàm của hàm số \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}}\) trên khoảng \((0; + \infty )\) là: A. \(2{x^2} - \frac{1}{x} + C\) B. \(2{x^2} + \frac{1}{x} + C\) C. \(4 - \frac{2}{{{x^3}}} + C\) D. \(4 + \frac{2}{{{x^3}}} + C\)
Xem lời giảiCho hàm số \(f(x)\) liên tục trên đoạn \([1;2]\) và \(\int_1^2 {\left[ {4f(x) - 2x} \right]} dx = 1\). Khi đó \(\int_1^2 f (x)dx\) bằng: A. \( - 1\) B. \( - 3\) C. \(3\) D. \(1\)
Xem lời giảiCho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\). Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y = f(x),y = 0,x = - 1\) và \(x = 5\) (Hình 4.29). Mệnh đề nào sau đây dúng?
Xem lời giảiTính diện tích hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} - x,y = {x^3} - {x^2}\) và các đường thẳng \(x = - 2,x = 1\).
Xem lời giảiGọi \(D\) là hình phẳng giới hạn bởi các đường \(y = {e^{2x}},y = 0,x = 0\) và \(x = 1\). Thể tích khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\) bằng: A. \(\pi \int_0^1 {{e^{4x}}} {\mkern 1mu} dx\) B. \(\pi \int_0^1 {{e^{2x}}} {\mkern 1mu} dx\) C. \(\int_0^1 {{e^{2x}}} {\mkern 1mu} dx\) D. \(\int_0^1 {{e^{4x}}} {\mkern 1mu} dx\)
Xem lời giảiMột vật chuyển động trong 3 giờ với vận tốc \(v\) (km/h) phụ thuộc vào thời gian \(t\) (h) có đồ thị là một phần của đường parabol có đỉnh \(I(2;9)\) và trục đối xứng song song với trục tung như Hình 4.30. Tính quãng đường mà vật di chuyển được trong 3 giờ đó. A. \(25,25{\mkern 1mu} {\rm{km}}\) B. \(24,25{\mkern 1mu} {\rm{km}}\) C. \(24,75{\mkern 1mu} {\rm{km}}\) D. \(26,75{\mkern 1mu} {\rm{km}}\)
Xem lời giảiMột cái cổng hình parabol như Hình 4.31. Chiều cao \(GH = 4{\mkern 1mu} {\rm{m}}\), chiều rộng \(AB = 4{\mkern 1mu} {\rm{m}},AC = BD = 0,9{\mkern 1mu} {\rm{m}}\). Người ta làm hai cánh cổng khi đóng lại là hình chữ nhật \(CDEF\) tô đậm với giá 1.200.000 đồng/m², phần còn lại làm khung hoa sắt với giá 900.000 đồng/m².
Xem lời giảiMột con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát có vận tốc tại thời điểm \(t\) giây là \(v = 4\cos (t)\) (cm/s). Tìm li độ của con lắc tại thời điểm \(t = \frac{{2\pi }}{3}\) giây, biết khi \(t = \frac{\pi }{2}\) giây thì con lắc có li độ \(x = 4\) cm.
Xem lời giải