Quảng cáo
  • Bài 4.36 trang 37

    Họ tất cả các nguyên hàm của hàm số \(f(x) = \frac{{4{x^3} + 1}}{{{x^2}}}\) trên khoảng \((0; + \infty )\) là: A. \(2{x^2} - \frac{1}{x} + C\) B. \(2{x^2} + \frac{1}{x} + C\) C. \(4 - \frac{2}{{{x^3}}} + C\) D. \(4 + \frac{2}{{{x^3}}} + C\)

    Xem lời giải
  • Bài 4.37 trang 37

    Cho hàm số \(f(x)\) liên tục trên đoạn \([1;2]\) và \(\int_1^2 {\left[ {4f(x) - 2x} \right]} dx = 1\). Khi đó \(\int_1^2 f (x)dx\) bằng: A. \( - 1\) B. \( - 3\) C. \(3\) D. \(1\)

    Xem lời giải
  • Quảng cáo
  • Bài 4.38 trang 38

    Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\). Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y = f(x),y = 0,x = - 1\) và \(x = 5\) (Hình 4.29). Mệnh đề nào sau đây dúng?

    Xem lời giải
  • Bài 4.39 trang 38

    Tính diện tích hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} - x,y = {x^3} - {x^2}\) và các đường thẳng \(x = - 2,x = 1\).

    Xem lời giải
  • Bài 4.40 trang 38

    Gọi \(D\) là hình phẳng giới hạn bởi các đường \(y = {e^{2x}},y = 0,x = 0\) và \(x = 1\). Thể tích khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\) bằng: A. \(\pi \int_0^1 {{e^{4x}}} {\mkern 1mu} dx\) B. \(\pi \int_0^1 {{e^{2x}}} {\mkern 1mu} dx\) C. \(\int_0^1 {{e^{2x}}} {\mkern 1mu} dx\) D. \(\int_0^1 {{e^{4x}}} {\mkern 1mu} dx\)

    Xem lời giải
  • Bài 4.41 trang 38

    Một vật chuyển động trong 3 giờ với vận tốc \(v\) (km/h) phụ thuộc vào thời gian \(t\) (h) có đồ thị là một phần của đường parabol có đỉnh \(I(2;9)\) và trục đối xứng song song với trục tung như Hình 4.30. Tính quãng đường mà vật di chuyển được trong 3 giờ đó. A. \(25,25{\mkern 1mu} {\rm{km}}\) B. \(24,25{\mkern 1mu} {\rm{km}}\) C. \(24,75{\mkern 1mu} {\rm{km}}\) D. \(26,75{\mkern 1mu} {\rm{km}}\)

    Xem lời giải
  • Bài 4.42 trang 39

    Một cái cổng hình parabol như Hình 4.31. Chiều cao \(GH = 4{\mkern 1mu} {\rm{m}}\), chiều rộng \(AB = 4{\mkern 1mu} {\rm{m}},AC = BD = 0,9{\mkern 1mu} {\rm{m}}\). Người ta làm hai cánh cổng khi đóng lại là hình chữ nhật \(CDEF\) tô đậm với giá 1.200.000 đồng/m², phần còn lại làm khung hoa sắt với giá 900.000 đồng/m².

    Xem lời giải
  • Bài 4.43 trang 39

    Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát có vận tốc tại thời điểm \(t\) giây là \(v = 4\cos (t)\) (cm/s). Tìm li độ của con lắc tại thời điểm \(t = \frac{{2\pi }}{3}\) giây, biết khi \(t = \frac{\pi }{2}\) giây thì con lắc có li độ \(x = 4\) cm.

    Xem lời giải