Hàm số \(y = f\left( x \right)\) trong Hình 1 nghịch biến trên khoảng nào? A. \(\left( { - 2;1} \right)\). B. \(\left( { - 4; - 2} \right)\). C. \(\left( { - 1;3} \right)\). D. \(\left( {1;3} \right)\).
Xem lời giảiHàm số \(y = f\left( x \right)\) trong Hình 1 có bao nhiêu điểm cực trị? A. 2. B. 3. C. 4. D. 5.
Xem lời giảiGiá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ {0;4} \right]\) trong Hình 1 là: A. ‒1. B. ‒2. C. 0. D. 1.
Xem lời giảiCho hàm số (y = frac{{{x^2} - 2{rm{x}} + 1}}{{{rm{x}} - 2}}). Khi đó A. Hàm số đồng biến trên các khoảng (left( { - infty ;1} right)) và (left( {3; + infty } right)). B. Hàm số đồng biến trên các khoảng (left( { - 1;2} right)) và (left( {2;3} right)). C. Hàm số đồng biến trên (left( { - infty ;2} right)). D. Hàm số đồng biến trên (left( {1; + infty } right)).
Xem lời giảiCho hàm số \(y = {x^3} + 4{x^2} - 3x + 4\). Khi đó A. Hàm số đạt cực đại tại \(x = \frac{1}{3}\), giá trị cực đại là \(\frac{{94}}{{27}}\). B. Hàm số đạt cực đại tại \(x = - 3\), giá trị cực đại là 22. C. Hàm số đạt cực đại tại \(x = 0\), giá trị cực đại là 4. D. Hàm số không có cực đại.
Xem lời giảiĐồ thị đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) được cho trong Hình 2. Điểm cực tiểu của hàm số \(y = f\left( x \right)\) là A. \(x = - 3\). B. \(x = - 1\). C. \(x = 0\). D. \(x = 1\).
Xem lời giảiĐồ thị đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) được cho trong Hình 3. Hàm số \(y = f\left( x \right)\) đồng biến trên các khoảng A. \(\left( { - 4; - 2} \right)\) và \(\left( { - 2;2} \right)\). B. \(\left( { - 2;0} \right)\). C. \(\left( { - 4; - 3} \right)\) và \(\left( { - 1;2} \right)\). D. \(\left( { - 3; - 1} \right)\) và \(\left( {1;2} \right)\).
Xem lời giảiCho hàm số \(y = {x^3} - 12{\rm{x}} + 6\). Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 3;3} \right]\) là A. 6. B. 15. C. 17. D. 22.
Xem lời giảiCho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}}\). A. Đồ thị hàm số có một tiệm cận xiên là \(y = x - 3\). B. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 3\). C. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 1\). D. Đồ thị hàm số không có tiệm cận xiên.
Xem lời giảiĐồ thị hàm số \(y = \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}}\) có tâm đối xứng là điểm: A. \(\left( { - 1; - 2} \right)\). B. \(\left( { - 2; - 1} \right)\). C. \(\left( { - 1; - 1} \right)\). D. \(\left( { - 2; - 2} \right)\).
Xem lời giải