Bài tập 15 trang 41 Tài liệu dạy – học Toán 7 tập 1Giải bài tập Tính giá trị của mỗi tỉ số. Quảng cáo
Đề bài Cho \({a \over {2b + c}} = {b \over {2c + a}} = {c \over {2a + b}}\,\,\left( {a,b,c > 0} \right)\) Tính giá trị của mỗi tỉ số. Lời giải chi tiết Theo tính chất của dãy tỉ số bằng nhau, ta có: \(\eqalign{ & {a \over {2b + c}} = {b \over {2c + a}} = {c \over {2a + b}} \cr & \Rightarrow {a \over {2b + c}} = {b \over {2c + a}} = {c \over {2a + b}} = {{a + b + c} \over {2b + c + 2c + a + 2a + b}} \cr & = {{a + b + c} \over {3a + 3b + 3c}} = {{a + b + c} \over {3(a + b + c)}} = {1 \over 3} \cr} \) (Vì \(a + b + c \ne 0)\) Vậy \({a \over {2b + c}} = {b \over {2c + a}} = {c \over {2a + b}} = {1 \over 3}.\) Loigiaihay.com
Quảng cáo
|