Bài tập 11 trang 90 Tài liệu dạy – học Toán 8 tập 2Giải bài tập a) Ở hình a, cho biết Quảng cáo
Đề bài a) Ở hình a, cho biết \(\widehat N = \widehat E,\,\,\widehat M = \widehat D,\,\,MP = 18,\,\,\)\(DF = 24.\) Tính y b) cho hình thang ABCD (hình b). Hãy điền vào chỗ trống: \(\Delta AMB \sim \Delta .....;\) \({{AM} \over {.....}} = {{.....} \over {DC}} = {{MB} \over {.....}};\,\,x = ...;\,\,\,y = ...\,\,\,\) Lời giải chi tiết a) Xét ∆MNP và ∆EDF có: \(\widehat N = \widehat E(gt)\) và \(\widehat M = \widehat D(gt)\) \(\Rightarrow \Delta MNP \sim \Delta DEF(g.g)\) \( \Rightarrow {{MP} \over {DF}} = {{NP} \over {EF}} \) \(\Rightarrow {{18} \over {24}} = {{y + 3} \over {32}} \) \(\Rightarrow {3 \over 4} = {{y + 3} \over {32}} \) \(\Rightarrow 4(y + 3) = 96 \) \(\Rightarrow y + 3 = 24 \Rightarrow y = 21.\) b) • \(\Delta AMB \sim \Delta CMD\) vì \(\widehat {AMB} = \widehat {CMD}\) (hai góc đối đỉnh) và \(\widehat {MAB} = \widehat {MCD}\) (hai góc so le trong và AB // CD) • \({{AM} \over {CM}} = {{AB} \over {DC}} = {{MB} \over {MD}} \Rightarrow {6 \over {15}} = {8 \over x} = {y \over {10}}\) Từ đó suy ra: \(\eqalign{ & {6 \over {15}} = {8 \over x} \Rightarrow x = 20 \cr & {6 \over {15}} = {y \over {10}} \Rightarrow y = 4 \cr} \) Loigiaihay.com
Quảng cáo
|