Bài 84 trang 51 SBT Hình học 10 Nâng cao

Giải bài tập Bài 84 trang 51 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Cho tam giác cân có góc ở đáy bằng \(\alpha \). Chứng minh rằng

\(2\sin \alpha \cos \alpha  = \sin 2\alpha \).

Lời giải chi tiết

(h.70).

 

Xét tam giác \(ABC\) cân ở đỉnh \(A\) có góc đáy bằng \(\alpha \), \(AH\) là đường cao. Ta có

\(\begin{array}{l}S = \dfrac{1}{2}AH.BC = AH.BH\\S = \dfrac{1}{2}.AB.AC.\sin ({180^0} - 2\alpha ) \\= \dfrac{1}{2}.AB.AC.\sin 2\alpha \end{array}\)

Từ đó suy ra \(2AH.BH = AB.AC.\sin 2\alpha\)

\(     \Rightarrow   \sin 2\alpha  = 2.\dfrac{{BH}}{{AB}}.\dfrac{{AH}}{{AC}}\)

\(= 2\cos \alpha .\sin \alpha \)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close