Bài 89 trang 52 SBT Hình học 10 Nâng cao

Giải bài tập Bài 89 trang 52 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Cho điểm \(M\) nằm trong đường tròn \((O)\) ngoại tiếp tam giác \(ABC\). Kẻ các đường thẳng \(MA, MB, MC,\) chúng cắt lại đường tròn đó lần lượt ở \(A’, B’, C’\). Chứng minh rằng:

\(\dfrac{{{S_{A'B'C'}}}}{{{S_{ABC}}}} = \dfrac{{{{({R^2} - M{O^2})}^3}}}{{{{(MA.MB.MC)}^2}}}\).

Lời giải chi tiết

(h.76).

 

\(\begin{array}{l}{S_{A'B'C'}} = \dfrac{{A'B'.B'C'.C'A'}}{{4R}}.\\{S_{ABC}} = \dfrac{{AB.BC.CA}}{{4R}}.\end{array}\)

Suy ra \(\dfrac{{{S_{A'B'C'}}}}{{{S_{ABC}}}} = \dfrac{{A'B'.B'C'.C'A'}}{{AB.BC.CA}}\)    (*)

Ta lại có

\(\Delta MAB  \sim \Delta MB'A'\) nên \(\dfrac{{A'B'}}{{AB}} = \dfrac{{MA'}}{{MB}} = \dfrac{{MA.MA'}}{{MA.MB}}\).

Do \(MA.MA' = |{\wp _{M/(O)}}| = {R^2} - M{O^2}\) nên \(\dfrac{{A'B'}}{{AB}} = \dfrac{{{R^2} - M{O^2}}}{{MA.MB}}\).

Tương tự 

\(\dfrac{{B'C'}}{{BC}} = \dfrac{{{R^2} - M{O^2}}}{{MB.MC}}  ;\) \(   \dfrac{{C'A'}}{{CA}} = \dfrac{{{R^2} - M{O^2}}}{{MC.MA}}\)            (**)

Thay (**) vào (*) ta được điều phải chứng minh.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !

Quảng cáo

list
close
Gửi bài Gửi bài