Bài 62 trang 146 SGK Đại số 10 nâng cao

Giải các hệ bất phương trình

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ bất phương trình

LG a.

\(\left\{ \matrix{
4x - 3 < 3x + 4 \hfill \cr 
{x^2} - 7x + 10 \le 0 \hfill \cr} \right.\)

Phương pháp giải:

Giải từng bpt trong hệ và kết luận nghiệm.

Lời giải chi tiết:

Ta có: 

\( \Leftrightarrow \left\{ \matrix{
4x - 3 < 3x + 4 \hfill \cr 
{x^2} - 7x + 10 \le 0 \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
x < 7 \hfill \cr 
2 \le x \le 5 \hfill \cr} \right.\)

\(\Leftrightarrow 2 \le x \le 5\)

Vậy \(S = [2, 5]\)

LG b.

\(\left\{ \matrix{
2{x^2} + 9x - 7 > 0 \hfill \cr 
{x^2} + x - 6 \le 0 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \left\{ \matrix{
2{x^2} + 9x - 7 > 0 \hfill \cr 
{x^2} + x - 6 \le 0 \hfill \cr} \right.\cr & \Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x < {{ - 9 - \sqrt {137} } \over 4} \hfill \cr 
x > {{ - 9 + \sqrt {137} } \over 4} \hfill \cr} \right. \hfill \cr 
- 3 \le x \le 2 \hfill \cr} \right. \cr 
& \Leftrightarrow {{ - 9 + \sqrt {137} } \over 4} < x \le 2 \cr} \) 

Vậy \(S = ({{ - 9 + \sqrt {137} } \over 4};2{\rm{]}}\)

LG c.

\(\left\{ \matrix{
{x^2} - 9 < 0 \hfill \cr 
(x - 1)(3{x^2} + 7x + 4) \ge 0 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\({x^2} - 9 < 0 \Leftrightarrow  - 3 < x < 3\).

Giải bpt \((x - 1)(3{x^2} + 7x + 4) \ge 0\) bằng cách xét dấu ta có bảng:

\( \Rightarrow \left( {x - 1} \right)\left( {3{x^2} + 7x + 4} \right) \ge 0\) \( \Leftrightarrow \left[ \begin{array}{l}
- \frac{4}{3} \le x \le - 1\\
x \ge 1
\end{array} \right.\)

Do đó:

\(\eqalign{
& \left\{ \matrix{
{x^2} - 9 < 0 \hfill \cr 
(x - 1)(3{x^2} + 7x + 4) \ge 0 \hfill \cr} \right.\cr& \Leftrightarrow \left\{ \matrix{
- 3 < x < 3 \hfill \cr 
\left[ \matrix{
- {4 \over 3} \le x \le - 1 \hfill \cr 
x \ge 1 \hfill \cr} \right. \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
- {4 \over 3} \le x \le - 1 \hfill \cr 
1 \le x < 3 \hfill \cr} \right. \cr} \)

Vậy \(S = \,{\rm{[}} - {4 \over 3},\, - 1{\rm{]}}\, \cup {\rm{[}}1,\,3)\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close