Bài 6 trang 79 SGK Hình học 11

Cho hình lăng trụ tam giác ABC.A'B'C' , Gọi I, J lần lượt là trọng tâm của tam giác ABC và A'B'C' (h.2.77).

Quảng cáo

Đề bài

Cho hình lăng trụ tam giác \(ABC.A'B'C'\), Gọi \(I, J\) lần lượt là trọng tâm của tam giác \(ABC\) và \(A'B'C'\) (h.2.77). Thiết diện tạo bởi mặt phẳng \((AIJ)\) với hình lăng trụ đã cho là

(A) Tam giác cân;

(B) Tam giác vuông;

(C) Hình thang;

(D) Hình bình hành.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Xác định thiết diện của lăng trụ tạo bởi mặt phẳng \((AIJ)\).

Sử dụng tính chất: Nếu hai mặt phẳng chứa hai đường thẳng song song thì cắt nhau theo giao tuyến song song với hai đường thẳng đó.

Lời giải chi tiết

Gọi \(M,M'\) lần lượt là trung điểm của \(BC,B'C'\).

Do \(I, J\) là trọng tâm tam giác \(ABC, A'B'C'\) nên \(A, I, M\) thẳng hàng và \(A', J, M'\) thẳng hàng.

Do đó \(\left( {AA'M'M} \right) \equiv \left( {AIJ} \right)\) nên thiết diện của lăng trụ tạo bởi mặt phẳng \((AIJ)\) là tứ giác \(AA'M'M\).

Ta có \(\left\{ \begin{array}{l}\left( {AA'M'M} \right) \cap \left( {A'B'C'} \right) = A'M'\\\left( {AA'M'M} \right) \cap \left( {ABC} \right) = AM\\\left( {ABC} \right)//\left( {A'B'C'} \right)\end{array} \right.\)

\(\Rightarrow A'M'//AM\).

Lại có \(\Delta ABC = \Delta A'B'C' \Rightarrow AM = A'M'\).

Vậy tứ giác \(AA'M'M\) là hình bình hành.

Chọn đáp án D.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close