Bài 6 trang 171 Tài liệu dạy – học Toán 7 tập 1Giải bài tập Cho tam giác MNP vuông tại M. Trên tia đối của tia MN ta lấy điểm A sao cho MA = MP, trên tia đối của tia MP ta lấy điểm B sao cho MB = MN. Quảng cáo
Đề bài Cho tam giác MNP vuông tại M. Trên tia đối của tia MN ta lấy điểm A sao cho MA = MP, trên tia đối của tia MP ta lấy điểm B sao cho MB = MN. a) Chứng minh rằng \(\Delta MNP = \Delta MBA.\) b) Các tam giác MAP và MBN là tam giác gì ? Vì sao ? c) Kẻ \(MH \bot NP(H \in NP),\) gọi K là giao điểm của đường thẳng MH với AB. Chứng minh rằng K là trung điểm của AB. Lời giải chi tiết
a)Xét hai tam giác MNP và MBA ta có: MN = MB (giả thiết) \(\widehat {NMP} = \widehat {BMA}\) (đối đỉnh) MP = MA (giả thiết) Do đó: \(\Delta MNP = \Delta MBA(c.g.c)\) b) Ta có: \(\widehat {NMP} + \widehat {AMP} = {180^0}\) (hai góc kề bù) Do đó: \({90^0} + \widehat {AMP} = {180^0} \Rightarrow \widehat {AMP} = {180^0} - {90^0} = {90^0}.\) Tam giác MPA vuông tại M có: MA = MP (giả thiết) Do đó tam giác MPA vuông cân tại M. Tam giác MNB vuông tại M có: MB = MN (giả thiết) Do đó: tam giác MNB vuông cân tại M. c) \(\Delta MNP = \Delta MBA\) (chứng minh câu a) \(\Rightarrow \widehat {MPN} = \widehat {MAB};\widehat {MNP} = \widehat {MBA}\) Ta có: \(\widehat {MNH} + \widehat {NMH} = {90^0}(\Delta MNH\) vuông tại H) \(\widehat {NMH} + \widehat {HMP} = {90^0}(\Delta MNP\) vuông tại M). Suy ra \(\widehat {MNH} = \widehat {HMP}\) Mà \(\widehat {HMP} = \widehat {KMB}\) (đối đỉnh) nên \(\widehat {MNH} = \widehat {KMB}.\) Mặt khác \(\widehat {KBM} = \widehat {MNH}(cmt)\) Do đó: \(\widehat {KBM} = \widehat {KMB} \Rightarrow \Delta KBM\) cân tại K => KB = KM (1). Ta có: \(\widehat {MPH} + \widehat {HMP} = {90^0}(\Delta MHP\) vuông tại H) \(\widehat {NMH} + \widehat {HMP} = {90^0}(\Delta MNP\) vuông tại M) \(\Rightarrow \widehat {MPH} = \widehat {NMH}\) Mà \(\widehat {NMH} = \widehat {KMA}\) (đối đỉnh) nên \(\widehat {HPM} = \widehat {KMN}\) Mặt khác \(\widehat {KAM} = \widehat {MPH}\) (chứng minh trên) Do đó: \(\widehat {KAM} = \widehat {KMA} \Rightarrow \Delta KAM\) vuông cân tại K => KA = KM (2) Từ (1) và (2) ta có: KB = KA. Vậy K là trung điểm của AB. Loigiaihay.com
Quảng cáo
|