TUYENSINH247 KHAI GIẢNG KHOÁ HỌC LỚP 1-9 NĂM MỚI 2025-2026

GIẢM 35% HỌC PHÍ + TẶNG KÈM SỔ TAY KIẾN THỨC ĐỘC QUYỀN

XEM NGAY
Xem chi tiết

Bài 44 trang 86 SGK Toán 9 tập 2

Cho tam giác ABC vuông ở A

Quảng cáo

Đề bài

Cho tam giác ABC vuông ở A, có cạnh BC cố định. Gọi I là giao điểm của ba đường phân giác trong. Tìm quỹ tích điểm I khi A thay đổi.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Tính góc ^BIC rồi kết luận theo quỹ tích cung chứa góc dựng trên đoạn BC.

+ Sử dụng: Với đoạn thẳng BC và góc α(00<α<1800) cho trước thì quỹ tích các điểm M thỏa mãn ^CMB=α là hai cung chứa góc α dựng trên đoạn CB.

Lời giải chi tiết

                              

* Dự đoán : Quỹ tích điểm I là cung chứa góc 135º dựng trên đoạn BC.

* Chứng minh :

Phần thuận : 

Điểm A luôn nhìn đoạn thẳng AB dưới một góc 90 nên quỹ tích điểm A là đường tròn đường kính BC.

Xét tam giác ABC vuông tại A nên ^ACB+^ABC=90, lại có BI là phân giác góc BCI là phân giác góc C nên

^ICB=12^ACB;^IBC=12^ABC^ICB+^IBC=12(^ACB+^ABC)=12.90=45

Xét tam giác IBC^BIC+^IBC+^ICB=180^BIC=18045=135

Nên số đo góc BIC luôn không đổi.

Vậy khi điểm A thay đổi trên đường tròn đường kính BC thì điểm I thay đổi và luôn nhìn đoạn thẳng BC dưới một góc 135.

Vậy điểm I thuộc hai cung chứa góc 135 dựng trên đoạn BC.

Phần đảo: 

Chứng minh mọi điểm I thuộc cung chứa góc 135º dựng trên đoạn BC, đều có tam giác ABC thỏa mãn điều kiện. 

+ Lấy I trên cung chứa góc 135º dựng trên đoạn BC

+ Kẻ tia Bx sao cho BI là phân giác của góc CBx

+ Kẻ tia Cy sao cho CI là phân giác của góc BCy

+ Bx cắt Cy tại A.

Khi đó I là giao điểm của hai đường phân giác trong tam giác ABC

Ta có: 

^BAC=1800(ˆB+ˆC)=18002(^IBC+^ICB)=18002(1800^BIC)=18003600+2.1350=900

Vậy ΔABC vuông tại A thỏa mãn đề bài. 

Kết luận: Quĩ tích các điểm I là hai cung chứa góc 135 dựng trên đoạn BC.

Loigiaihay.com 

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com

>> Chi tiết khoá học xem: TẠI ĐÂY

Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

close