Bài 44 trang 107 SBT Hình học 10 Nâng cao

Giải bài tập Bài 44 trang 107 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Viết phương trình đường tròn ngoại tiếp tam giác \(ABC\) biết \(A=(1 ; 3),\) \( B=(5 ; 6),\) \( C=(7 ; 0).\)

Lời giải chi tiết

Gọi \(I(x,y)\) là tâm đường tròn ngoại tiếp tam giác \(ABC\). Ta có

\(\begin{array}{l}IA = IB = IC    \Leftrightarrow    \left\{ \begin{array}{l}I{A^2} + I{B^2}\\I{A^2} = I{C^2}\end{array} \right.\\\Leftrightarrow      \left\{ \begin{array}{l}{(x - 1)^2} + {(y - 3)^2} = {(x - 5)^2} + {(y - 6)^2}\\{(x - 1)^2} + {(y - 3)^2} = {(x - 7)^2} + {y^2}\end{array} \right.\\\Leftrightarrow    \left\{ \begin{array}{l}8x + 6y = 51\\12x - 6y = 39\end{array} \right.      \Leftrightarrow    \left\{ \begin{array}{l}x =  \dfrac{9}{2}\\y =  \dfrac{5}{2}\end{array} \right.    \\ \Rightarrow    I = \left( { \dfrac{9}{2} ;  \dfrac{5}{2}} \right)\end{array}\)

Bán kính đường tròn :

\(R = IA\)

\(= \sqrt {{{\left( { \dfrac{9}{2} - 1} \right)}^2} + {{\left( { \dfrac{5}{2} - 3} \right)}^2}} \)

\(=  \dfrac{{5\sqrt 2 }}{2}\).

Phương trình đường tròn ngoại tiếp tam giác \(ABC\) là

\({\left( {x -  \dfrac{9}{2}} \right)^2} + {\left( {y - {{ \dfrac{5}{2}}^{}}} \right)^2} =  \dfrac{{25}}{2}\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close