Bài 34 trang 10 SBT Hình học 10 Nâng cao

Giải bài 34 trang 10 sách bài tập Hình học 10 Nâng cao. Cho tam giác ABC và một điểm O bất kì. Chứng minh rằng với mọi điểm M ta luôn luôn tìm được ba số...

Quảng cáo

Đề bài

Cho tam giác \(ABC\) và một điểm \(O\) bất kì. Chứng minh rằng với mọi điểm \(M\) ta luôn luôn tìm được ba số \(\alpha \,,\beta \,,\gamma \) sao cho \(\alpha  + \beta  + \gamma  = 1\) và \(\overrightarrow {OM}  = \alpha \overrightarrow {OA}  + \beta \overrightarrow {OB}  + \gamma \overrightarrow {OC} \). Nếu điểm \(M\) trùng với trọng tâm tam giác \(ABC\) thì các số \(\alpha \,,\beta \,,\gamma \) bằng bao nhiêu?

Lời giải chi tiết

Vì hai vec tơ \(\overrightarrow {CA} \,,\,\,\overrightarrow {CB} \) không cùng phương nên ta có các số \(\alpha \,,\,\,\beta \) sao cho \(\overrightarrow {CM}  = \alpha \overrightarrow {CA}  + \beta \overrightarrow {CB} \), hay là

\(\overrightarrow {OM}  - \overrightarrow {OC} = \alpha (\overrightarrow {OA}  - \overrightarrow {OC} ) + \beta (\overrightarrow {OB}  - \overrightarrow {OC} ).\)

Vậy \(\overrightarrow {OM}  = \alpha \overrightarrow {OA}  + \beta \overrightarrow {OB}  + (1 - \alpha  - \beta )\overrightarrow {OC} .\)

Đặt \(\gamma  = 1 - \alpha  - \beta \) thì \(\alpha  + \beta  + \gamma  = 1\) và \(\overrightarrow {OM}  = \alpha \overrightarrow {OA}  + \beta \overrightarrow {OB}  + \gamma \overrightarrow {OC} \).

Nếu M trùng G thì ta có \(\overrightarrow {OG}  = \dfrac{1}{3}(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} ).\)

Vậy \(\alpha  = \beta  = \gamma  = \dfrac{1}{3}\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close