Bài 32 trang 105 SBT Hình học 10 Nâng cao

Giải bài tập Bài 32 trang 105 SBT Hình học 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình đường thẳng

LG a

Qua \(A(-2 ; 0)\) và tạo với đường thẳng \(d: x+3y-3=0\) một góc \(45^0\).

Lời giải chi tiết:

Đường thẳng \(\Delta \) đi qua \(A(-2 ; 0)\) có phương trình:

\(\alpha (x + 2) + \beta y = 0\) hay \(\alpha x + \beta y + 2\alpha  = 0  ({\alpha ^2} + {\beta ^2} \ne 0)\).

\(\Delta \) tạo với \(d\) góc \(45^0\)

 \(\cos {45^0} =  \dfrac{{|\alpha  + 3\beta |}}{{\sqrt {{\alpha ^2} + {\beta ^2}} .\sqrt {10} }}\)

\(\Leftrightarrow    \dfrac{1}{{\sqrt 2 }} =  \dfrac{{|\alpha  + 3\beta |}}{{\sqrt {{\alpha ^2} + {\beta ^2}} .\sqrt {10} }}\)

\(\begin{array}{l}\Leftrightarrow 5({\alpha ^2} + {\beta ^2}) = {(\alpha  + 3\beta )^2}\\\Leftrightarrow  2{\alpha ^2} - 3\alpha \beta  - 2{\beta ^2} = 0  \\  \Leftrightarrow    \left[ \begin{array}{l}\alpha  = 2\beta \\\alpha  =  -  \dfrac{1}{2}\beta .\end{array} \right.\end{array}\)

Với \(\alpha  = 2\beta \), chọn \(\beta  = 1, \alpha  = 2\) ta được đường thẳng \({\Delta _1}: 2x + y + 4 = 0\).

Với \(\alpha  =  -  \dfrac{1}{2}\beta \), ta chọn \(\beta  =  - 2, \alpha  = 1\), ta được đường thẳng \({\Delta _2}: x - 2y + 2 = 0\).

LG b

Qua \(B(-1 ; 2)\) và tạo với đường thẳng \(d: \left\{ \begin{array}{l}x = 2 + 3t\\y =  - 2t\end{array} \right.\) một góc 600.

Lời giải chi tiết:

Gọi \(\overrightarrow u (a ; b)\) là vec tơ chỉ phương của đường thẳng \(\Delta \) cần tìm (\({a^2} + {b^2} \ne 0\)). \(d\) có vec tơ chỉ phương \(\overrightarrow v  = (3 ;  - 2)\).

\(\Delta \) tạo với d góc 600 khi và chỉ khi 

\(\cos {60^0} =  \dfrac{{|3a - 2b|}}{{\sqrt {{3^2} + {2^2}} .\sqrt {{a^2} + {b^2}} }}\)

\(\begin{array}{l} \Leftrightarrow     \dfrac{1}{2} =  \dfrac{{|3a - 2b|}}{{\sqrt {13} .\sqrt {{a^2} + {b^2}} }} \\   \Leftrightarrow    13({a^2} + {b^2}) = 4{(3a - 2b)^2}\\ \Leftrightarrow   23{a^2} - 48ab + 3{b^2} = 0\\ \Leftrightarrow   \left[ \begin{array}{l}a =  \dfrac{{24 - \sqrt {507} }}{{23}}b\\a =  \dfrac{{24 + \sqrt {507} }}{{23}}b\end{array} \right.\end{array}\)

Với \(a =  \dfrac{{24 - \sqrt {507} }}{{23}}b\), chọn \(b = 1, a =  \dfrac{{24 - \sqrt {507} }}{{23}}\), ta được đường thẳng

\({\Delta _1}: \left\{ \begin{array}{l}x =  - 1 +  \dfrac{{24 - \sqrt {507} }}{{23}}t\\y = 2 + t\end{array} \right.\)

Với \(a =  \dfrac{{24 + \sqrt {507} }}{{23}}b\), ta chọn \(b = 1, a =  \dfrac{{24 + \sqrt {507} }}{{23}}\), ta được đường thẳng

\({\Delta _2}: \left\{ \begin{array}{l}x =  - 1 +  \dfrac{{24 + \sqrt {507} }}{{23}}t\\y = 2 + t\end{array} \right.\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close