Bài 34 trang 105 SBT Hình học 10 Nâng cao

Giải bài tập Bài 34 trang 105 SBT Hình học 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

LG a

Cho hai điểm \(A(1 ; 1)\) và \(B(3 ; 6)\). Viết phương trình đường thẳng đi qua \(A\) và cách \(B\) một khoảng bằng \(2\).

Lời giải chi tiết:

 Đường thẳng \(\Delta \) đi qua \(A(1 ; 1)\) có phương trình:

\(\alpha (x - 1) + \beta (y - 1) = 0 \)

\(  \Leftrightarrow   \alpha x + \beta y - \alpha  - \beta  = 0  ({\alpha ^2} + {\beta ^2} \ne 0).\)

Ta có

\(\begin{array}{l}d(B  ; \Delta ) = 2 \\   \Leftrightarrow    \dfrac{{|3\alpha  + 6\beta  - \alpha  - \beta |}}{{\sqrt {{\alpha ^2} + {\beta ^2}} }} = 2  \\   \Leftrightarrow   {(2\alpha  + 5\beta )^2} = 4({\alpha ^2} + {\beta ^2})\\ \Leftrightarrow  \beta (21\beta  + 20\alpha ) = 0 \\   \Leftrightarrow     \left[ \begin{array}{l}\beta  = 0\\21\beta  + 20\alpha  = 0.\end{array} \right.\end{array}\)

Với \(\beta  = 0\), chọn \(\alpha  = 1\), ta được đường thẳng \({\Delta _1}: x - 1 = 0\).

Với \(21\beta  + 20\alpha  = 0\), chọn \(\alpha  = 21, \beta  =  - 20\), ta được đường thẳng \({\Delta _2}: 21x - 20y - 1 = 0\).

LG b

Cho đường thẳng \(d\) có phương trình \(8x-6y-5=0\). Viết phương trình đường thẳng \(\Delta \) song song với \(d\) và cách \(d\) một khoảng bằng \(5.\)

Lời giải chi tiết:

\(M(x ; y) \in \Delta     \Leftrightarrow     d(M ; d) = 5\)

\(\Leftrightarrow     \dfrac{{|8x - 6y - 5|}}{{\sqrt {64 + 36} }} = 5 \)

\(\Leftrightarrow   8x - 6y - 5 =  \pm 50\).

Vậy có hai đường thẳng cần tìm là

\(\begin{array}{l}{\Delta _1}: 8x - 6y + 45 = 0\\{\Delta _2}: 8x - 6y - 55 = 0\end{array}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close