Bài 35 trang 105 SBT Hình học 10 Nâng cao

Giải bài tập Bài 35 trang 105 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Cho ba điểm \(A(1 ; 1),\) \( B(2 ; 0),\) \(C(3 ; 4)\). Viết phương trình đường thẳng đi qua \(A\) và cách đều hai điểm \(B, C\).

Lời giải chi tiết

Đường thẳng \(\Delta \) đi qua \(A\) có phương trình: \(\alpha x + \beta y - \alpha  - \beta  = 0\,\,({\alpha ^2} + {\beta ^2} \ne 0)\).

Từ giả thiết \(d(B\,;\,\Delta )\, = d(C\,;\,\Delta )\), ta tìm được \(\alpha  =  - 4\beta \) hoặc \(3\alpha  + 2\beta  = 0\).

Suy  ra có hai đường thẳng thỏa mãn bài toán là :

\(\eqalign{  & {\Delta _1}:\,4x - y - 3 = 0  \cr  & {\Delta _2}:\,2x - 3y + 1 = 0 \cr} \)

Loigiaihay.com

Xem thêm tại đây: Bài 3. Khoảng cách và góc.
Quảng cáo
list
close
Gửi bài