Bài 3 trang 79 SGK Toán 11 tập 1 - Cánh DiềuTính các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right)\); b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}}\); c) \(\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}}\). Quảng cáo
Đề bài Tính các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right)\); b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}}\); c) \(\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}}\). Phương pháp giải - Xem chi tiết Sử dụng định lí về phép toán trên giới hạn hữu hạn của hàm số \(\mathop {\lim }\limits_{x \to {x_0}} x = {x_0};\mathop {\lim }\limits_{x \to {x_0}} c = c\) Đối với câu b,c (dạng \(\frac{0}{0}\)): phân tích đa thức thành nhân tử để triệt tiêu giới hạn dạng \(\frac{0}{0}\). Lời giải chi tiết a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right) = 4.{\left( { - 3} \right)^2} - 5.\left( { - 3} \right) + 6 = 57\) b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {2x - 1} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {2x - 1} \right) = 2.2 - 1 = 3\) c) \(\begin{array}{c}\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{1}{{\left( {\sqrt x + 2} \right)\left( {x + 4} \right)}}\\ = \frac{1}{{\left( {\sqrt 4 + 2} \right)\left( {4 + 4} \right)}} = \frac{1}{{32}}\end{array}\)
Quảng cáo
|