Bài 29 trang 105 SBT Hình học 10 Nâng caoGiải bài tập Bài 29 trang 105 SBT Hình học 10 Nâng cao Quảng cáo
Đề bài Cho điểm \(A=(-1 ; 2)\) và đường thẳng \(\Delta : \left\{ \begin{array}{l}x = - 1 + 2t\\y = - 2t.\end{array} \right.\) Tính khoảng cách từ điểm \(A\) đến đường thẳng \(\Delta \). Từ đó suy ra diện tích của hình tròn tâm \(A\) tiếp xúc với \(\Delta \). Lời giải chi tiết \(\Delta \) có phương trình tổng quát : \(x+y+1=0\). Do đó \(d(A;\Delta ) = \dfrac{{| - 1 + 2 + 1|}}{{\sqrt {{1^2} + {1^2}} }}\) \(= \dfrac{2}{{\sqrt 2 }} = \sqrt 2 \). Đường tròn tâm \(A\) tiếp xúc với \(\Delta \) nên có bán kính \(R = \sqrt 2 \). Diện tích của hình tròn này là \(S = \pi {R^2} = 2\pi \). Loigiaihay.com
Quảng cáo
|