tuyensinh247

Bài 22 trang 9 SBT Hình học 10 Nâng cao

Giải bài 22 trang 9 sách bài tập Hình học 10 Nâng cao. Cho điểm O nằm trong hình bình hành ABCD. Các đường thẳng đi qua O và song song với các cạnh của hình bình hành lần lượt cắt AB, BC, CD, DA tại M, N, P, Q...

Quảng cáo

Đề bài

Cho điểm \(O\) nằm trong hình bình hành \(ABCD\). Các đường thẳng đi qua \(O\) và song song với các cạnh của hình bình hành lần lượt cắt \(AB, BC, CD, DA\) tại \(M, N, P, Q\). Gọi \(E\) là giao điểm của \(BQ\) và \(DM, F\) là giao điểm của \(BP\) và \(DN\). Tìm điều kiện để \(E, F, O\) thẳng hàng.

Phương pháp giải - Xem chi tiết

Sử dụng kết quả bài tập 19 trang 8 SBT hình học 10 nâng cao:

Cho tam giác \(ABC\). Các điểm \(M, N, P\) lần lượt chia các đoạn thẳng \(AB, BC, CA\) theo các tỉ số lần lượt là \(m, n, p\) (đều khác 1).

Khi đó, \(M, N, P\) thẳng hàng khi và chỉ khi \(mnp=1\) (Định lí Mê-nê-la-uýt)

Lời giải chi tiết

Xét tam giác \(ABQ\) và ba điểm thẳng hàng \(M, E, D\).

Giả sử \(M\) chia \(AB\) theo tỉ số \(m, E\) chia \(BQ\) theo tỉ số \(n, D\) chia \(QA\) theo tỉ số \(p\)

Theo định lí Mê-nê-la-uýt ta có \(mnp=1\).

Xét tam giác \(QNB\) và ba điểm \(O, E, C\).

Khi đó \(O\) chia \(QN\) theo tỉ số \(m,\) \( C\) chia \(NB\) theo tỉ số \(n\) và \(E\) chia \(BQ\) theo tỉ số \(p\).

Vì \(mnp=1\) nên ba điểm \(O, E, C\) thẳng hàng.

Cũng chứng minh tương tự, ta có ba điểm \(F, O, A\) thẳng hàng.

Vậy để ba điểm \(O, E, F\) thẳng hàng, điều kiện cần và đủ là năm điểm \(A, C, E, F, O\) thẳng hàng, hay điểm \(O\) phải nằm trên đường chéo \(AC\) của hình bình hành đã cho.

Loigiaihay.com

  • Bài 23 trang 9 SBT Hình học 10 Nâng cao

    Giải bài tập Bài 23 trang 9 sách bài tập Hình học 10 Nâng cao. Cho ngũ giác ABCDE. Gọi M, N, P, Q, R lần lượt là trung điểm các cạnh AB, BC, CD, DE, EA. Chứng minh rằng hai tam giác MPE và NQR có cùng trọng tâm.

  • Bài 24 trang 9 SBT Hình học 10 Nâng cao

    Giải bài 24 trang 9 sách bài tập Hình học 10 Nâng cao. Cho hai hình bình hành ABCD và AB’C’D’ có chung đỉnh A. Chứng minh rằng...

  • Bài 25 trang 9 SBT Hình học 10 Nâng cao

    Giải bài 25 trang 9 sách bài tập Hình học 10 Nâng cao. Cho hai điểm phân biệt A, B...

  • Bài 26 trang 9 SBT Hình học 10 Nâng cao

    Giải bài 26 trang 9 sách bài tập Hình học 10 Nâng cao. Cho điểm O cố định và đường thẳng d đi qua hai điểm A, B cố định. Chứng minh rằng điểm M thuộc đường thẳng d khi và chỉ khi có số \alpha sao cho OM = \alpha OA + (1 - \alpha )OB. Với điều kiện nào của \alpha thì M thuộc đoạn thẳng AB?

  • Bài 27 trang 9 SBT Hình học 10 Nâng cao

    Giải bài 27 trang 9 sách bài tập Hình học 10 Nâng cao. Cho điểm O cố định và hai vec tơ u, v cố định...

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close