Bài 22 trang 76 SGK Toán 9 tập 2

Giải bài 22 trang 76 SGK Toán 9 tập 2. Trên đường tròn (O) đường kính AB

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Đề bài

Trên đường tròn \((O)\) đường kính \(AB\), lấy điểm \(M\) (khác \(A\) và \(B\)). Vẽ tiếp tuyến của (O) tại \(A\). Đường thẳng \(BM\) cắt tiếp tuyến đó tại \(C\). Chứng minh rằng ta luôn có: \(M{A^2} = MB.MC\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Sử dụng góc nội tiếp chắn nửa đường tròn là góc vuông.

+ Chứng minh \(\Delta {\rm M}{\rm A}{\rm B}\) đồng dạng với \(\Delta MCA\) từ đó suy ra tỉ lệ cạnh để có đẳng thức cần chứng minh. 

Lời giải chi tiết

 

+ Xét \(\left( O \right)\) có \(\widehat {AMB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) suy ra \(AM \bot BC \Rightarrow \widehat {CMA} = 90^\circ \).

 Lại có \(AC\) là tiếp tuyến nên \(\widehat {BAC} = 90^\circ \) .

+ Ta có \(\widehat {MBA} + \widehat {MAB} = 90^\circ \) (vì tam giác \(MAB\) vuông tại \(M\) ) và \(\widehat {MAB} + \widehat {MAC} = 90^\circ \) (do \(\widehat {BAC} = 90^\circ \)) nên \(\widehat {MBA} = \widehat {MAC}\)

+ Xét \(\Delta MAB\) và \(\Delta MCA\) có \(\widehat M\) chung và \(\widehat {MBA} = \widehat {MAC}\) (cmt) nên \(\Delta {\rm M}{\rm A}{\rm B}\) đồng dạng với \(\Delta MCA\left( {g - g} \right)\) suy ra \(\dfrac{{MA}}{{MC}} = \dfrac{{MB}}{{MA}} \Rightarrow M{A^2} = MB.MC\) (đpcm) 

loigiaihay.com

Quảng cáo

Xem thêm tại đây: Bài 3. Góc nội tiếp
Gửi bài tập - Có ngay lời giải