tuyensinh247

Bài 22 trang 41 SBT Hình học 10 Nâng cao

Giải bài tập Bài 22 trang 41 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Tứ giác \(ABCD\) có hai đường chéo \(AC\) và \(BD\) vuông góc với nhau tại \(M\). Gọi \(P\) là trung điểm đoạn thẳng \(AD\). Chứng minh rằng : \(MP \bot BC\) khi và chỉ khi \(\overrightarrow {MA} .\overrightarrow {MC}  = \overrightarrow {MB} .\overrightarrow {MD} .\)

Lời giải chi tiết

(h.32).

 

\(\begin{array}{l}2\overrightarrow {MP} .\overrightarrow {BC}  = (\overrightarrow {MA}  + \overrightarrow {MD} ).(\overrightarrow {MC}  - \overrightarrow {MB} )\\= \overrightarrow {MA} .\overrightarrow {MC}  - \overrightarrow {MD} .\overrightarrow {MB}  + \overrightarrow {MD} .\overrightarrow {MC}  - \overrightarrow {MA} .\overrightarrow {MB} \\= \overrightarrow {MA} .\overrightarrow {MC}  - \overrightarrow {MB} .\overrightarrow {MD} \end{array}\)

( Do \(AC \bot BD\) nên \(\overrightarrow {MA} .\overrightarrow {MB}  = \overrightarrow {MD} .\overrightarrow {MC}  = 0\)).

Từ đó ta có

\(\begin{array}{l}MP \bot BC   \Leftrightarrow   \overrightarrow {MP} .\overrightarrow {BC}  = 0\\\Leftrightarrow   \overrightarrow {MA} .\overrightarrow {MC}  = \overrightarrow {MB} .\overrightarrow {MD} .\end{array}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close