Bài 24 trang 41 SBT Hình học 10 Nâng caoGiải bài tập Bài 24 trang 41 SBT Hình học 10 Nâng cao Quảng cáo
Đề bài Cho \(AA'\) là một dây cung của đường tròn \((O)\) và \(M\) là một điểm nằm trên dây cung đó. Chứng minh rằng \(2\overrightarrow {MA} .\overrightarrow {MO} = MA(MA - MA').\) Lời giải chi tiết (h.34).
Gọi \(P\) là trung điểm của \(AA’\) thì \(OP \bot AA'\) nên theo công thức hình chiếu ta có \(2\overrightarrow {MA} .\overrightarrow {MO} = 2\overrightarrow {MA} .\overrightarrow {MP} \). Nhưng vì \(P\) là trung điểm của \(AA’\) nên \(2\overrightarrow {MP} = \overrightarrow {MA} + \overrightarrow {MA'} \). Vậy: \(\begin{array}{l}2\overrightarrow {MA} .\overrightarrow {MO} = \overrightarrow {MA} .(\overrightarrow {MA} + \overrightarrow {MA'} )\\ = M{A^2} + \overrightarrow {MA} .\overrightarrow {MA} '\\= M{A^2} - MA.MA'\\ = MA(MA - MA').\end{array}\) Loigiaihay.com
Quảng cáo
|