Bài 24 trang 41 SBT Hình học 10 Nâng cao

Giải bài tập Bài 24 trang 41 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Cho \(AA'\) là một dây cung của đường tròn \((O)\) và \(M\) là một điểm nằm trên dây cung đó. Chứng minh rằng \(2\overrightarrow {MA} .\overrightarrow {MO}  = MA(MA - MA').\)

Lời giải chi tiết

(h.34).

 

Gọi \(P\) là trung điểm của \(AA’\) thì \(OP \bot AA'\) nên theo công thức hình chiếu ta có

\(2\overrightarrow {MA} .\overrightarrow {MO}  = 2\overrightarrow {MA} .\overrightarrow {MP} \). Nhưng vì \(P\) là trung điểm  của \(AA’\) nên \(2\overrightarrow {MP}  = \overrightarrow {MA}  + \overrightarrow {MA'} \).

Vậy:

\(\begin{array}{l}2\overrightarrow {MA} .\overrightarrow {MO}  = \overrightarrow {MA} .(\overrightarrow {MA}  + \overrightarrow {MA'} )\\ = M{A^2} + \overrightarrow {MA} .\overrightarrow {MA} '\\= M{A^2} - MA.MA'\\ = MA(MA - MA').\end{array}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close