Bài 21 trang 111 SGK Toán 9 tập 1

Giải bài 21 trang 111 SGK Toán 9 tập 1. Chứng minh rằng AC là tiếp tuyến của đường tròn.

Quảng cáo

Đề bài

Cho tam giác \(ABC\) có \(AB=3,\ AC=4,\ BC=5\). Vẽ đường tròn \((B;BA)\). Chứng minh rằng \(AC\) là tiếp tuyến của đường tròn. 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Định lí Pytago đảo: Tam giác \(ABC\) có \(BC^2=AC^2+AB^2\) thì là tam giác vuông tại \(A\).

+) Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn. 

Lời giải chi tiết

Xét tam giác \(ABC\) ta có:

\(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=9+16=25\)

Suy ra \(BC^2=AB^2+AC^2\)

Theo định lý Pytago đảo, ta có tam giác \(ABC\) là tam giác vuông tại \(A\).

Suy ra \(AB \bot AC\) tại \(A\).

Xét đường tròn (B;BA) có đường thẳng AC đi qua điểm A thuộc đường tròn và AC vuông góc với bán kính BA nên \(AC\) là tiếp tuyến của đường tròn.

Loigiaihay.com

Quảng cáo

Gửi bài