Bài 2 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạoCho \(A\) và \(B\) là hai biến cố độc lập. Quảng cáo
Đề bài Cho \(A\) và \(B\) là hai biến cố độc lập. Biết \(P\left( A \right) = 0,4\) và \(P\left( B \right) = 0,5\). Xác suất của biến cố \(A \cup B\) là A. 0,9. B. 0,7. C. 0,5. D. 0,2. Phương pháp giải - Xem chi tiết ‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\). ‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\). Lời giải chi tiết \(A\) và \(B\) là hai biến cố độc lập \( \Rightarrow P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,4.0,5 = 0,2\) \( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,4 + 0,5 - 0,2 = 0,7\) Chọn B.
Quảng cáo
|