Bài 2 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạoTổng của cấp số nhân lùi vô hạn: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{4^n}}} + ...\) bằng: Quảng cáo
Đề bài Tổng của cấp số nhân lùi vô hạn: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{4^n}}} + ...\) bằng: A. \(\frac{3}{4}\). B. \(\frac{5}{4}\). C. \(\frac{4}{3}\). D. \(\frac{6}{5}\). Phương pháp giải - Xem chi tiết Áp dụng công thức tính tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1}\) và công bội \(q\): \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\) Lời giải chi tiết Tổng trên là tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{4}\) nên: \(M = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{4^n}}} + ... = \frac{1}{{1 - \frac{1}{4}}} = \frac{4}{3}\) Chọn C.
Quảng cáo
|