Bài 2 trang 171 Tài liệu dạy – học Toán 7 tập 1

Giải bài tập Cho tam giác ABC vuông tại A có AB = 9 cm, AC = 12 cm.

Quảng cáo

Đề bài

Cho tam giác ABC vuông tại A có AB = 9 cm, AC = 12 cm.

a) Tính độ dài BC.

b) Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho M là trung điểm của AD. Chứng minh rằng \(\Delta AMB = \Delta DMC.\)

c) Chứng minh rằng tam giác ACD vuông.

Lời giải chi tiết

 

a)Tam giác ABC vuông tại A (gt) \(\Rightarrow B{C^2} = A{B^2} + A{C^2}\)   (định lý Pythapore)

Do đó: \(B{C^2} = {9^2} + {12^2} = 81 + 144 = 225.\)

Mà BC > 0 nên \(BC = \sqrt {225}  = 15(cm).\)

b) Xét tam giác AMB và DMC ta có:

AM = DM (giả thiết)

BM = CM (M là trung điểm của BC)

\(\widehat {AMB} = \widehat {CMD}\)   (hai góc đối đỉnh)

Do đó: \(\Delta AMB = \Delta DMC(c.g.c)\)

c) Ta có: \(\widehat {MBA} = \widehat {MCD}(\Delta AMB = \Delta DMC)\)

Mà hai góc MBA và MCD so le trong. Do đó: AB // CD.

Mà \(AB \bot AC(gt) \Rightarrow AC \bot CD.\)   Vậy tam giác ACD vuông tại C.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close