Bài 2 trang 105 SGK Đại số 10

Lập bảng xét dấu các biểu thức sau...

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Lập bảng xét dấu các biểu thức sau

LG a

\(f(x) =(3{x^2} - 10x + 3)(4x - 5)\);

Phương pháp giải:

Cho nhị thức: \(f(x)=a x+b\) ta có:

+) \(f(x)\) cùng dấu với hệ số \(a\) khi \(x \in\left( { - \frac{b}{a};\, + \infty } \right).\)

+) \(f(x)\) trái dấu với hệ số \(a\) khi \(x \in \left( { + \infty ; \, - \frac{b}{a}} \right)\)

Cho đa thức bậc hai: \(f\left( x \right) = a{x^2} + bx + c\;\;\left( {a \ne 0} \right),\;\;\)\(\Delta  = {b^2} - 4ac.\)

+) Nếu \(\Delta < 0\) thì \(f(x)\) luôn cùng dấu với hệ số \(a,\) với mọi \(x \in R.\)

+) Nếu \(\Delta = 0\) thì \(f(x)\) luôn cùng dấu với hệ số \(a,\) trừ khi \(x=-\frac{b}{2a}.\)

+) Nếu \(\Delta > 0\) thì \(f(x)\) luôn cùng dấu với hệ số \(a\) khi \(x < x_1\) hoặc \(x > x_2,\) trái dấu với hệ số \(a\) khi \(x_1 < x < x_2\) trong đó \(x_1, \, \, x_2 \, \, (x_1 < x_2)\) là hai nghiệm của \(f(x).\)

Lời giải chi tiết:

\(f(x) =(3{x^2} - 10x + 3)(4x - 5)\) 

Ta có:

\(4x - 5 = 0 \Leftrightarrow x = \dfrac{5}{4}\)

\(3{x^2} - 10x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = \dfrac{1}{3}\end{array} \right.\)

Tam thức bậc hai \(3{x^2} - 10x + 3\) có hệ số \(a=3>0\) nên mang dấu "+" khi \(x > 3\) hoặc \(x < \dfrac{1}{3}\) và mang dấu “-“ nếu \(\dfrac{1}{3} < x < 3\).

Xét dấu nhị thức \(4x - 5\) và \(3{x^2} - 10x + 3\) ta được bảng xét dấu:

Kết luận:

\(f(x) < 0\) với \(x \in \left( { - \infty ;{1 \over 3}} \right) \cup \left( {{5 \over 4};3} \right)\)

\(f(x) > 0\) với \(x \in \left( {{1 \over 3};{5 \over 4}} \right) \cup \left( {3; + \infty } \right)\)

LG b

\(f(x) = (3{x^2} - 4x)(2{x^2} - x - 1)\);

Lời giải chi tiết:

+ Tam thức 3x2 – 4x có hai nghiệm x = 0 và x = 4/3, hệ số a = 3 > 0.

Do đó 3x2 – 4x mang dấu + khi x < 0 hoặc x > 4/3 và mang dấu – khi 0 < x < 4/3.

+ Tam thức 2x2 – x – 1 có hai nghiệm x = –1/2 và x = 1, hệ số a = 2 > 0

Do đó 2x2 – x – 1 mang dấu + khi x < –1/2 hoặc x > 1 và mang dấu – khi –1/2 < x < 1.

Ta có bảng xét dấu:

Vậy \(f\left( x \right) > 0\;\;khi\;\;x \in \left( { - \infty ;\; - \frac{1}{2}} \right)\)\( \cup \left( {0;\;1} \right) \cup \left( {\frac{4}{3}; + \infty } \right).\)

\(f\left( x \right) < 0\;\;khi\;\;x \in \left( { - \frac{1}{2};\;0} \right) \cup \left( {1;\;\frac{4}{3}} \right).\)

LG c

\(f(x) =\)\( (4{x^2} - 1)( - 8{x^2} + x - 3)(2x + 9)\);

Lời giải chi tiết:

+ Tam thức 4x2 – 1 có hai nghiệm x = –1/2 và x = 1/2, hệ số a = 4 > 0

Do đó 4x2 – 1 mang dấu + nếu x < –1/2 hoặc x > 1/2 và mang dấu – nếu –1/2 < x < 1/2

+ Tam thức –8x2 + x – 3 có Δ = –95 < 0, hệ số a = –8 < 0 nên luôn mang dấu –.

+ Nhị thức 2x + 9 có nghiệm x = –9/2.

Ta có bảng xét dấu:

Vậy \(f\left( x \right) > 0\;\;khi\;\;x \in \left( { - \infty ; - \frac{9}{2}} \right) \)\(\cup \left( { - \frac{1}{2};\;\frac{1}{2}} \right).\)

\(f\left( x \right) < 0\;\;khi\;\;x \in \left( { - \frac{9}{2}; - \frac{1}{2}} \right)\)\( \cup \left( {\frac{1}{2}; + \infty } \right).\)

LG d

\(f(x) = \dfrac{(3x^{2}-x)(3-x^{2})}{4x^{2}+x-3}.\)

Lời giải chi tiết:

+ Tam thức 3x2 – x có hai nghiệm x = 0 và x = 1/3, hệ số a = 3 > 0.

Do đó 3x2 – x mang dấu + khi x < 0 hoặc x > 1/3 và mang dấu – khi 0 < x < 1/3.

+ Tam thức 3 – x2 có hai nghiệm x = √3 và x = –√3, hệ số a = –1 < 0

Do đó 3 – x2 mang dấu – khi x < –√3 hoặc x > √3 và mang dấu + khi –√3 < x < √3.

+ Tam thức 4x2 + x – 3 có hai nghiệm x = –1 và x = 3/4, hệ số a = 4 > 0.

Do đó 4x2 + x – 3 mang dấu + khi x < –1 hoặc x > 3/4 và mang dấu – khi –1 < x < 3/4.

Ta có bảng xét dấu:

Vậy \(f\left( x \right) > 0\) khi \(x \in \left( { - \sqrt 3 ;\; - 1} \right) \cup \left( {0;\frac{1}{3}} \right) \cup \left( {\frac{3}{4};\;\sqrt 3 } \right).\)

\(f\left( x \right) < 0\) khi \(x \in \left( { - \infty ;\; - \sqrt 3 } \right) \cup \left( { - 1;0} \right) \cup \left( {\frac{1}{3};\;\frac{3}{4}} \right)\)\( \cup \left( {\sqrt 3 ; + \infty } \right).\)

Loigiaihay.com

>> Xem thêm

Quảng cáo
close