1. Khái niệm tích phân Một số bài toán dẫn đến khái niệm tích phân a) Quãng đường đi được của một vật
Xem chi tiếtMột vật chuyển động thẳng trong 10 giây với vận tốc \(v(t) = 3t + 2\) (m/s). Gọi \(s(t)\) là quãng đường vật đi được đến thời điểm \(t\) giây (0 < t < 10). Xét chuyển động của vật từ thời điểm \(t = 3\) giây đến thời điểm \(t = 5\) giây. a) Giải thích ý nghĩa của đại lượng \(L = s(5) - s(3)\). b) Gọi \(F(t)\) là một nguyên hàm bất kì của \(v(t)\). So sánh \(L\) và \(F(5) - F(3)\).
Xem lời giảiCho \(f(x) = 2x\). Tính và so sánh \(\int\limits_1^2 2 f(x){\mkern 1mu} dx\) và \(2\int\limits_1^2 f (x){\mkern 1mu} dx\).
Xem lời giảiTính a) \(\int_1^9 {\frac{{2\sqrt x - {x^2}}}{{{x^3}}}} dx\); b) \(\int_{ - 1}^1 {{e^{x + 2}}} dx\); c) \(\int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {3 + 2{{\cot }^2}x} \right)} dx\).
Xem lời giảiBiết (F(x) = sqrt x ) là một nguyên hàm của hàm số (f(x)). Tính (int_1^4 {left[ {2 + f(x)} right]dx} ).
Xem lời giảiCho hàm số \(f(x)\) có đạo hàm \(f'(x)\) liên tục trên đoạn \([ - 1;4]\) thỏa mãn \(f( - 1) = 2\), \(f(4) = 7\). Tính \(\int_{ - 1}^4 {f'} (x)dx\).
Xem lời giảiCho các hàm số \(f(x)\), \(g(x)\) liên tục trên đoạn \([ - 1;3]\) thỏa mãn \(\int_{ - 1}^2 f (x)dx = 2\), \(\int_{ - 1}^3 f (x)dx = 6\), và \(\int_{ - 1}^2 g (x)dx = - 1\). Tính: a) \(\int_2^3 f (x)dx\); b) \(I = \int_{ - 1}^2 {\left( {x + 2f(x) - 3g(x)} \right)} dx\).
Xem lời giảiTính các tích phân sau: a) \(\int_{ - 1}^2 x (x + 1)dx\); b) \(\int_0^{\frac{\pi }{2}} {{{\cos }^2}} \frac{x}{2}dx\); c) \(\int_1^2 {{2^{1 - 3x}}} dx\); d) \(\int_0^{\frac{\pi }{4}} {{{\tan }^2}} xdx\); e) \(\int_1^4 {\left( {{e^{2x + 1}} - 3x\sqrt x } \right)} dx\); g) \(\int_1^4 | 5 - 3x|dx\).
Xem lời giảiMột quả bóng được ném lên từ độ cao \(1,5m\) với vận tốc ban đầu \(24m/s\). Biết gia tốc của quả bóng là \(a = - 9,8m/{s^2}\). a) Tính vận tốc của quả bóng tại thời điểm 1 giây sau khi được ném lên. b) Tính quãng đường quả bóng đi được từ lúc ném lên đến khi chạm đất lần đầu.
Xem lời giảiĐường gấp khúc ABD trong Hình 4.8 là đồ thị vận tốc \(v(t)\) của một vật (t = 0 là thời điểm vật bắt đầu chuyển động). Trong khoảng thời gian mà \(v < 0\)thì vật chuyển động ngược chiều với khoảng thời gian mà \(v > 0\). a) Viết công thức của hàm số \(v(t)\) với \(t \in [0;9]\). b) Biết rằng quãng đường vật đi chuyển với vận tốc \(v = v(t)\) từ thời điểm \(t = a\) đến thời điểm \(t = b\) là \(s = \int_a^b | v(t)|{\mkern 1mu} dt\), tính quãng đường vật di chuyển được trong 9 giây kể từ khi vật
Xem lời giải