Bài 13 trang 40 SBT Hình học 10 Nâng cao

Giải bài tập Bài 13 trang 40 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Chứng minh công thức sau (với hai  vec tơ \(\overrightarrow a \) và \(\overrightarrow b \) bất kì ):

\(\overrightarrow a .\overrightarrow b  = \dfrac{1}{2}(|\overrightarrow a  + \overrightarrow b {|^2} - |\overrightarrow a {|^2} - |\overrightarrow b {|^2}).\)

Lời giải chi tiết

Ta có

\(\dfrac{1}{2}(|\overrightarrow a  + \overrightarrow b {|^2} - |\overrightarrow a {|^2} - |\overrightarrow b {|^2})\)

\(= \dfrac{1}{2}({\overrightarrow a ^2} + {\overrightarrow b ^2} + 2\overrightarrow a .\overrightarrow b  - {\overrightarrow a ^2} - {\overrightarrow b ^2}) \)

\(= \overrightarrow a .\overrightarrow b .\)

Loigiaihay.com

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close