Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua hai điểm \(A\left( {1;0;1} \right)\), \(B\left( {5;2;3} \right)\) và vuông góc với mặt phẳng \(\left( \beta \right):2x - y + z - 7 = 0.\)
Xem lời giảiViết phương trình mặt phẳng \(\left( R \right)\) đi qua điểm \(A\left( {1;2; - 1} \right)\) và vuông góc với hai mặt phẳng \(\left( P \right):4x - 2y + 6z - 11 = 0\), \(\left( Q \right):2x + 2y + 2z - 7 = 0.\)
Xem lời giảiTính khoảng cách từ gốc toạ độ và từ điểm \(M\left( {1; - 2;13} \right)\) đến mặt phẳng \(\left( P \right):2x - 2y - z + 3 = 0.\)
Xem lời giảiTính khoảng cách giữa hai mặt phẳng song song \(\left( P \right):x - 2 = 0\) và \(\left( Q \right):x - 8 = 0.\)
Xem lời giảiCho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = 2a\), \(AD = 5a\), \(SA = 3a\). Bằng cách thiết lập hệ trục toạ độ \(Oxyz\) như hình dưới đây, tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right).\)
Xem lời giảiMột công trường xây dựng nhà cao tầng đã thiết lập hệ toạ độ \(Oxyz\). Hãy kiểm tra tính song song hoặc vuông góc giữa các mặt kính \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) của một toà nhà, biết: \(\left( P \right):3x + y - z + 2 = 0\) \(\left( Q \right):6x + 2y - 2z + 11 = 0\) \(\left( R \right):x - 3y + 1 = 0\)
Xem lời giải