-
Bài 5 trang 42
Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua hai điểm \(A\left( {1;0;1} \right)\), \(B\left( {5;2;3} \right)\) và vuông góc với mặt phẳng \(\left( \beta \right):2x - y + z - 7 = 0.\)
Xem lời giải -
Bài 6 trang 42
Viết phương trình mặt phẳng \(\left( R \right)\) đi qua điểm \(A\left( {1;2; - 1} \right)\) và vuông góc với hai mặt phẳng \(\left( P \right):4x - 2y + 6z - 11 = 0\), \(\left( Q \right):2x + 2y + 2z - 7 = 0.\)
Xem lời giải -
Bài 7 trang 43
Tính khoảng cách từ gốc toạ độ và từ điểm \(M\left( {1; - 2;13} \right)\) đến mặt phẳng \(\left( P \right):2x - 2y - z + 3 = 0.\)
Xem lời giải -
Bài 8 trang 43
Tính khoảng cách giữa hai mặt phẳng song song \(\left( P \right):x - 2 = 0\) và \(\left( Q \right):x - 8 = 0.\)
Xem lời giải -
Bài 9 trang 43
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = 2a\), \(AD = 5a\), \(SA = 3a\). Bằng cách thiết lập hệ trục toạ độ \(Oxyz\) như hình dưới đây, tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right).\)
Xem lời giải -
Bài 10 trang 43
Một công trường xây dựng nhà cao tầng đã thiết lập hệ toạ độ \(Oxyz\). Hãy kiểm tra tính song song hoặc vuông góc giữa các mặt kính \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) của một toà nhà, biết: \(\left( P \right):3x + y - z + 2 = 0\) \(\left( Q \right):6x + 2y - 2z + 11 = 0\) \(\left( R \right):x - 3y + 1 = 0\)
Xem lời giải