Trả lời câu hỏi 6 Bài 6 trang 23 Toán 9 Tập 2Giải hệ phương trình (II) bằng cách đặt ẩn phụ ( u = 1/x; v = 1/y) rồi trả lời bài toán đã cho. Quảng cáo
Đề bài Giải hệ phương trình (II) bằng cách đặt ẩn phụ ( \(u = \dfrac{1}{x};v = \dfrac{1}{y}\)) rồi trả lời bài toán đã cho. \(\left( {II} \right)\,\,\left\{ \matrix{{\displaystyle{1 \over x}} = {\displaystyle{3 \over 2}}.{\displaystyle{1 \over y}} \hfill \cr {\displaystyle{1 \over x}} + {\displaystyle{1 \over y}} = {\displaystyle{1 \over {24}}} \hfill \cr} \right.\)
Video hướng dẫn giải Phương pháp giải - Xem chi tiết Đặt \(u = \dfrac{1}{x};v = \dfrac{1}{y}\) rồi đưa hệ đã cho về hệ phương trình hai ẩn \(u;v\). Giải hệ bằng phương pháp thế hoặc cộng đại số ta tìm được \(u;v\). Lời giải chi tiết Đặt \(u = \dfrac{1}{x};v = \dfrac{1}{y}\), hệ (II) trở thành: \(\eqalign{& \left( {II} \right)\,\,\left\{ \matrix{u = {\displaystyle{3 \over 2}}.v \hfill \cr u + v = {\displaystyle{1 \over {24}}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{u = {\displaystyle{3 \over 2}}v \hfill \cr {\displaystyle{3 \over 2}}v + v = {\displaystyle{1 \over {24}}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{u = {\displaystyle{3 \over 2}}v \hfill \cr {\displaystyle{5 \over 2}}v = {\displaystyle{1 \over {24}}} \hfill \cr} \right. \cr & \Leftrightarrow \left\{ \matrix{u = {\displaystyle{3 \over 2}}v \hfill \cr v = {\displaystyle{1 \over {60}}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{u = {\displaystyle{1 \over {40}}} \hfill \cr v = {\displaystyle{1 \over {60}}} \hfill \cr} \right. \cr} \) Khi đó ta có: \(\left\{ \begin{array}{l} Vậy số ngày để đội A làm 1 mình xong đoạn đường đó là 40 ngày Số ngày để đội B làm 1 mình xong đoạn đường đó là 60 ngày Loigiaihay.com
Quảng cáo
|