Trả lời câu hỏi 7 Bài 6 trang 23 SGK toán 9 tập 2

Hãy giải bài toán trên bằng cách khác (gọi x là số phần công việc làm trong một ngày của đội A;...

Quảng cáo

Đề bài

Hãy giải bài toán trên bằng cách khác (gọi x là số phần công việc làm trong một ngày của đội A; y là số phần công việc làm trong một ngày của đội B). Em có nhận xét gì về cách giải này ? 

Phương pháp giải - Xem chi tiết

Ta gọi ẩn là số phần công việc làm được trong 1 ngày của đội A và đội B (tức gọi năng suất)

Từ đó lập hệ và giải hệ tìm được.

Lời giải chi tiết

Gọi x là số phần công việc làm trong 1 ngày của đội A 

y là số phần công việc làm trong 1 ngày của đội B (x;y>0)

Một ngày cả hai đội làm được \(\dfrac {1}{24}\) công việc nên ta có phương trình:

\(x + y = \dfrac {1}{24}\)

Mỗi ngày phần việc của đội A gấp rưỡi đội B nên ta có phương trình

\(x=1,5y\)

Do đó, ta có hệ phương trình:

\(\begin{array}{l}
\left\{ \begin{array}{l}
x + y = \dfrac{1}{{24}}\\
x = 1,5y
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 1,5y\\
1,5y + y = \dfrac{1}{{24}}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 1,5y\\
2,5y = \dfrac{1}{{24}}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y = \dfrac{1}{{60}}\\
x = 1,5.\dfrac{1}{{60}}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = \dfrac{1}{{60}}\\
x = \dfrac{1}{{40}}
\end{array} \right.\left( {tmđk} \right)
\end{array}\)

Trong 1 ngày, đội A làm được \(\dfrac{1}{{40}}\) công việc nên đội A làm 1 mình sẽ hoàn thành công việc trong 40 ngày

Trong 1 ngày, đội B làm được \(\dfrac{1}{{60}}\) công việc nên đội B làm 1 mình sẽ hoàn thành công việc trong 60 ngày

Nhận xét: 

Ở cách giải này thì chúng ta không cần đặt ẩn phụ để giải hệ phương trình.

Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close