Trả lời câu hỏi 1 Bài 7 trang 55 Toán 9 Tập 2

Giải các phương trình trùng phương:

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình trùng phương:

LG a

\(4x^4 + x^2– 5 = 0\)

Phương pháp giải:

+ Đặt \({x^2} = {\rm{ }}t,{\rm{ }}t{\rm{ }} \ge {\rm{ }}0\).

+ Giải phương trình \(a{t^2} + {\rm{ }}bt{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}0\).

+ Với mỗi giá trị tìm được của t (thỏa mãn \( t \ge 0\)), lại giải phương trình \({x^2} = {\rm{ }}t\). 

Lời giải chi tiết:

\(4x^4 + x^2– 5 = 0\)

Đặt \({x^2} = t\,\,\left( {t \ge 0} \right)\). 

Phương trình trở thành \(4t^2 + t – 5 = 0\)

Nhận thấy đây là phương trình bậc hai ẩn \(t\) có \(a + b + c = 4+1-5=0\) nên phương trình có nghiệm

\(\displaystyle {t_1} = 1;\,\,{t_2} = {{ - 5} \over 4}\)

Do \(t \ge 0\)  nên chỉ có \(t = 1\) thỏa mãn điều kiện

Với \(t = 1\), ta có: \({x^2} = 1 \Leftrightarrow x =  \pm 1\)

Vậy phương trình đã cho có 2 nghiệm \(x_1 = 1; x_2 = -1\) 

LG b

\(3x^4 + 4x^2 + 1 = 0.\)

Phương pháp giải:

+ Đặt \({x^2} = {\rm{ }}t,{\rm{ }}t{\rm{ }} \ge {\rm{ }}0\).

+ Giải phương trình \(a{t^2} + {\rm{ }}bt{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}0\).

+ Với mỗi giá trị tìm được của t (thỏa mãn \( t \ge 0\)), lại giải phương trình \({x^2} = {\rm{ }}t\). 

Lời giải chi tiết:

\(3x^4 + 4x^2 + 1 = 0.\)

Đặt \({x^2} = t\,\,\left( {t \ge 0} \right)\).

Phương trình trở thành: \(3t^2 + 4t + 1 = 0\)

Nhận thấy đây là phương trình bậc hai ẩn \(t\) có \(a - b + c =3-4+1= 0\) nên phương trình có nghiệm

\(\displaystyle {t_1} =  - 1;\,\,{t_2} = {{ - 1} \over 3}\)

Cả 2 nghiệm của phương trình đều không thỏa mãn điều kiện \(t \ge 0\)

Vậy phương trình đã cho vô nghiệm. 

 Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close